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ABSTRACT
The Internet of Things (IoT) is a rapidly growing area of
computing, with manufacturers rushing to market and stan-
dards bodies sticking to tried and tested architectures. How-
ever, when considering an Internet of Things within the
home, many of these activities are ill-thought out, inappro-
priate and even possibly physically dangerous, as evidenced
by various attacks [1, 5]. We introduce the concept of an
Intranet of Things (iot) by defining a suitable model and
device roles to represent the ecosystem of devices typically
found within an Intranet of Things. We subsequently present
a secure iot protocol implemented on the TelosB mote for
TinyOS, which enables users to easily and securely add new
Things to the network with minimal configuration, as well as
protect the devices, data and user privacy against common
attacks. Additionally, we demonstrate integrating our iot
protocol into the Homework router Cache, a high-performance
complex event processing engine, providing a powerful and
customisable closed-loop of control for the iot.

1. INTRODUCTION
The modern home is becoming increasingly filled with a

variety of connected devices, each providing myriad differ-
ent and often overlapping services within the home. More
recently, “smart-appliances” and the Internet of Things have
begun to enter our homes, attempting to digitize our already
existing“dumb-appliances”and objects within the home. As
these devices enter our homes, in an often piecemeal fash-
ion, bringing with them their own distinct ecosystems, pro-
tocols and standards, the user is faced with the increasingly
difficult burden of managing this network of heterogeneous
devices. Due to the sheer number and diversity of these
devices, problems arise with respect to how these devices
co-operate, as well as how to ensure the user’s network and
information remains secure against new and unanticipated
threats.

Many such devices present a severe lack of thoughtful inte-
gration into existing networks, infrastructure and the tech-
nology into the devices themselves. Existing approaches ei-
ther integrate traditional power-hungry 802.11 WIFI chipsets
or run 6LowPan, a scaled down IPv6 for low-power 802.15.4
radios. However, both of these approaches can severely limit
the lifetime of a battery-powered device. With TCP/IP built
into these devices, naturally, many of them offer services
directly to the Internet [4, 13, 30] or connect to a cloud ser-
vice [8,11]. Whilst this reaps the benefits of anywhere access
and scalable compute power/storage, it opens up multiple
points of failure by relying on such connectivity to the In-
ternet or Cloud, including reliability, security, privacy and

data-ownership; such an approach has already resulted in
attacks similar to that of Stuxnet [5].

In this paper we present a solution for creating a low-
power and secure Intranet of Things (iot) integrated into
the Homework router platform, by designing an entirely new
protocol with a realistic iot model, described in section 3.3,
in mind and taking advantage of a combination of symmetric
and asymmetric cryptographic algorithms, as well as primi-
tives to enable efficient, secure and authenticated entry into
a new network with minimal user configuration. By inte-
grating the iot protocol into the Homework router, we are
able to create a powerful, customisable and scalable closed-
loop of control within the local network, without relying on
connectivity to the Internet or Cloud [3,20].

The main contributions of this paper are:

• An Intranet of Things model describing three equiva-
lence classes of Things and their operational semantics
within the network.

• The design and implementation of a secure, fit-for-
purpose iot protocol, implemented over TinyOS run-
ning on TeloB motes.

• A user-friendly security scheme for low-power Things,
using symmetric and asymmetric cryptography to en-
able new trusted devices to enter the network securely
while minimising user interaction and configuration.

• A controller implementation integrated into the Home-
work Cache, provided by a modified controller role for
TinyOS and a Java-based proxy communicating be-
tween the iot and Homework Cache. Additionally, to
“close the loop”, a sample Homework automaton has
been created to demonstrate the integration.

2. MOTIVATION

2.1 A Secure Intranet of Things Protocol
In recent years the Internet of Things has resurfaced, from

its beginnings as RFID-tracked products in a warehouse
stock floor, transformed into embedded low-power wireless
devices in everyday objects around us, under the guise of
“smart-appliances”. Many manufacturers have rushed to
market with new smart devices to replace our old unintel-
ligent ones, but in so doing, they’ve integrated these de-
vices and services into our home networks and the Internet
without much thought or consideration for the device’s and
network’s power, reliability, security and privacy.

The first problem this paper addresses is that many cur-
rent approaches have integrated expensive wireless chipsets
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and/or heavyweight/inefficient protocols (IPv6/6Lowpan, TCP,
MQTT [4], [12]) into Things, or simply manipulated Things
to fit into the traditional RESTful client-server architecture
[15]. However, given that many of these Things are expected
to run unattended on battery-power for as long as possible,
these approaches are largely inappropriate. Therefore, it’s
necessary to engineer a new, lightweight, power-efficient pro-
tocol, specifically tailored for the typical iot model discussed
later in section 3, which also scales well as the number of de-
vices inevitably increases.

Our model and protocol targets a network of Things within
the home, with devices communicating and forming the closed-
loop of control locally, as opposed to in the Cloud; thus, in
lieu of an Internet of Things (IoT), a more suitable name,
an Intranet of Things (iot), will be used.

2.2 Security
In the context of an iot, security is of paramount impor-

tance due to the rich and sensitive nature of the data that
sensors gather, as well as the level of control available from
actuators. In a similar fashion to how Stuxnet was directly
targeted at machine-to-machine (M2M) networks [10], re-
cently there have been several significant attacks targeted
towards IoT devices [1, 5]. For example, over half a million
users’ Belkin IoT devices and home networks were vulner-
able to attackers being able to remote control and monitor
these devices, as well as allowing attackers access to the
home network [1]. This resulted in risks ranging from elec-
tricity wastage, to presence monitoring and, in severe cases,
possibilities of home fires being caused by the appliances
attached to these devices.

Thus, the second problem this paper attempts to address
is securing an iot to ensure the user’s devices, network and
data are protected against possible attacks and also allow
new “approved” devices to join the network with minimal
user effort and interaction. Due to the scale of an iot net-
work, containing potentially tens if not hundreds of devices,
this needs to be possible without the user being required to
manually configure each device with a security key.

Deployable security in wireless sensor networks continues
to be a significant problem for several reasons. Firstly, power
is a major concern in wireless sensor networks (WSN); thus,
running expensive conventional cryptography algorithms in
order to keep transmitted data secret can be detrimental
to the lifetime of a node. Secondly, WSN nodes are often
extremely constrained in terms of memory (ROM/RAM),
requiring cryptography algorithms to fit within extreme size
constraints and is especially problematic when trying to re-
duce computational load by storing pre-computed tables.
Lastly, being able to dynamically add new nodes to a net-
work post-deployment, as well as (re)distribute keys for the
network, enables the network to scale, replace failed nodes
and protect against attackers. Previous work has demon-
strated various solutions to the first and second part of this
problem [19,23,24], but have largely ignored the third part,
assuming that keys or shared secrets are distributed at in-
stall time.

The types of attack to which IoT networks are vulnerable
are:

• Eavesdropping - An attacker can overhear messages
broadcast by nodes in the network, using the informa-
tion learned to potentially perform a physical attack
(when house doors are unlocked), or log for later anal-

ysis (activity monitoring).

• Masquerading - An attacker masquerades as a legit-
imate node within the network and is able to inject
packets as well as abuse the closed-loop of control within
the network with potentially dangerous consequences
e.g., transmit cold temperature readings to trick the
boiler to increase the temperature.

• Man-in-the-middle - An attacker intercepts communi-
cations between two nodes and is able to overhear,
manipulate and inject packets without either node de-
tecting it.

• Replay - An attacker records messages between nodes
in the network and rebroadcasts them in an attempt to
manipulate the network. This attack can be performed
even when packets are encrypted.

• Denial of service - An attacker abuses the resources
available on a node by overwhelming it with expensive
operations e.g., verifying a certificate.

• Node Capture - An attacker captures a node and can
retrieve data/keys stored on the device, potentially
compromising the security of the network.

2.3 Integration
Without integrating the iot into a more powerful and user-

accessible platform, the iot risks becoming static and in-
flexible, incapable of meeting the needs of the constantly
changing and evolving lives of the users. To tackle this
problem, most existing activities have pursued Cloud inte-
gration [2,8,11]; as described section 1, whilst this approach
provides benefits such as scalable compute power/storage
and anywhere-access, reliability and security become seri-
ous issues, especially in cases where Things become part of
security systems or health-care devices.

Similarly, within the home networking domain, they are
many issues regarding integration and usability of commod-
ity home network routers, in which, despite their widespread
adoption, the majority of routers are still not designed for
the average user, making controlling and managing a home
network a difficult and neglected task. In an attempt to solve
this, the Homework project redesigned the home router from
the ground up, re-engineering the protocols, models and ar-
chitectures to truly suit the target users and the home en-
vironment [3, 25]. A key component of the platform is the
Cache [32], a high-performance complex event processing en-
gine, enabling the router to perform closed-loop control over
the network and events which occur. On top of this, users
can create customised rules to alert them of certain usage
patterns occurring within the network.

Thus, the third and last problem this paper addresses is
integrating the aforementioned secure iot protocol into the
Homework Cache, to utilise the event processing engine for
“closing the loop” in an iot.

3. DESIGN
The design of our secure iot protocol largely consists of

three parts, the core iot protocol, which encapsulates the
iot model, the security protocol, which ensures secure packet
transport and entry into the network, and the Cache inte-
gration, enabling the closed-loop of control within the iot.
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This section will first describe our assumptions, followed by
the design of the iot protocol, security scheme and Cache
integration, respectively.

3.1 Assumptions
In designing the iot protocol, the following assumptions

were made:

• The controller role is implemented on a PC and has
sufficient resources available to process and store a
large number of public keys for nodes within the net-
work.

• Typical raw sensor data is non-critical, ephemeral and
frequent enough such that occasional packet loss is ac-
ceptable. Additionally, we expect the network to be
sufficiently well engineered, such that a sufficient per-
centage of packets are received to provide utility.

• The controller has sufficient resources available to gen-
erate and store secure pair-wise session keys for each
node in the network.

• Things are typically retrofit into existing homes and
structures, thus connecting these devices directly to
power lines is impractical in most cases; instead Things
must rely on battery-power and are expected to run for
as long as possible.

• The network is deployed over a geographically small
enough area, the home, such that it’s unnecessary to
perform packet gathering and compression between the
source sensor and sink controller. Thus, intermediary
nodes need not store keys for each of the surround-
ing nodes and can, if necessary, forward any encrypted
packets received towards their destination.

• The majority of nodes deployed in an iot are situated
within a secure property e.g., the home or office; due
to the increased cost of tamper-proofing nodes, node
capture is not deemed to be a significant issue and will
not be mitigated against in this security protocol.

3.2 Hardware and Software Platforms
Whilst many newer and more powerful sensor platforms

are available today, much of the existing work for WSNs
and WSN security has been developed for the TelosB mote,
a 8Mhz TI MSP430 microcontroller with 48KB ROM and
10KB RAM due to its low-power operation and TinyOS sup-
port. TinyOS1 is a lightweight operating system designed
for embedded devices in WSNs and has strong support in
academia, with many libraries and tools available.

3.3 iot Protocol
In the design of an improved and fit-for-purpose iot pro-

tocol, we attempt to minimise radio usage in order to max-
imise the lifetime of a battery-powered Thing, sacrificing re-
liability where appropriate, whilst still ensuring robust and
predictable operation. In this section, we first present the
architectural model of a typical iot network, followed by the
key design areas for achieving these goals within the proto-
col: reliability, integrity, liveness, minimising packet headers
and ensuring correct operational semantics (at-most-once).

1http://www.tinyos.net/

iot Model
Within the Intranet of Things ecosystem, three distinct equiv-
alence classes of devices exist:

• Sensors, devices which sense and receive input from
the real world or another service, such as temperature
sensors, presence sensors etc. Data from these devices
is typically periodic, thus non-critical, only requiring
integrity and not complete reliability.

• Actuators, devices which represent physical or digi-
tal outputs, such as displays, lights and functions on
appliances, that present an RPC interface for a con-
troller to call. Functions provided by these devices are
expected to be carried out once and only once when
requested, thus reliability and acknowledgements are
needed to ensure reliable operation.

• Controllers, typically one device such as a PC or
home router, which queries, connects and manages
the network of sensors and actuators, orchestrating
the closed-loop of interaction between sensor inputs
and actuator outputs based on user-specified actions
or rules.

Figure 1 presents the iot model with a variety of typical
Things connected to the controller, with matching colours
representing the closed-loop of control between each of the
Things in the network. As discussed below, reliability varies
with respect to the typical operations a device performs,
which is portrayed with the solid and dashed directed lines.

Sensor

Actuator

Reliable RPC

Unreliable Unicast

Legend

Temperature
sensor

Presence
sensor

Central
heating

Lights

Door
sensor

Alarm

Controller

Figure 1: iot model

Reliability
Typical Things within the iot are low-power embedded de-
vices, relying on wireless communication which is inherently
unreliable. Thus, it’s necessary to implement reliability on
top in order to ensure correct operation. However, whilst
other approaches have simply chosen to run over TCP, which
provides a fully reliable connection, our design opts for selec-
tive reliability on top of the unreliable packet stream. This
enables the protocol to ensure critical packets are sent re-
liably, such as connection handshakes, as well as allow de-
vices to save power and sleep after a transmission instead
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of waiting for an acknowledgement when the data isn’t crit-
ical, such as ephemeral sensor readings. Similarly, this also
ensures commands sent to actuators from the controller are
carried out at-most-once.

Liveness
Ensuring Things within the network are alive and accessible
is another key issue, since wireless interference and depleted
batteries are a real problem, causing the closed-loop interac-
tion to hang or fail and Things within the network to waste
power sending packets to devices that are no longer “out
there”. To resolve this issue, checks must be performed, us-
ing piggybacked messages where possible, to ensure that no
extra bandwidth is wasted, such as a sensor periodically re-
questing a response to a reading. Otherwise standard ping-
ack messages are exchanged.

Integrity
Whilst ensuring reliability of some data is not essential, it
is however extremely important that any received data be
correct. Values corrupted in transit would appear to the
controller as seemingly correct, which could then cause the
controller to issue invalid commands to an actuator. To en-
sure integrity of the data, a checksum of the data, provided
by the security protocol, is transmitted with it and com-
pared on the receiving side, verifying that it hasn’t been
altered in transit.

Protocol data unit
One of the key aims of this protocol is to ensure low en-
ergy consumption, which on an embedded devices means
transmitting as little as possible over the radio, as radio
transmission is the most power-hungry operation for a node.
Therefore it was imperative that our protocol adds very little
overhead to the already small payload size.

Figure 2 shows the secure protocol data unit layout for
the iot protocol. Channels are synonymous to ports found
in TCP/UDP and enable devices to hold state for more than
one connection and potentially take on more than one role.
Sequence numbers ensure packet ordering, at-most-one se-
mantics and protect against possible replay attacks. The
command field designates the type of payload each packet
holds e.g. sensor reading, handshake ack, actuator command
etc. The low order bit of the command field, designated R,
is used to indicate that the packet requires an acknowledge-
ment. Additionally, the shaded region shows the encrypted
and authenticated bytes, ensuring the sensitive data is kept
secret and secure. The MAC field, contains the message
authentication code (MAC), used for authenticating the in-
tegrity of the encrypted fields.

3.4 Integration
In this section we present the architecture design for inte-

grating the iot into the Homework Cache, as well as describe
in more detail how the closed-loop of control functions using
the Cache and its related concepts.

As shown in figure 3, the integration architecture com-
prises of 3 main components, the iot network managed by
the controller device, the iot proxy and the Homework Cache.
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Figure 2: iot Protocol data unit, shading indicates bytes
are encrypted and authenticated using a pairwise symmetric
key.
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Figure 3: iot integration into Homework Cache

Controller role
In the previously described iot model, the controller role
manages the network and orchestrates the closed-loop of
control, receiving sensor messages and issuing actuator com-
mands. The current implementation of the controller is im-
plemented on TelosB a mote for TinyOS. Thus, in order for
the controller to communicate with the Cache, the TelosB
mote is connected to the host PC and provides a bridge into
the iot network, allowing a PC-side application to issue com-
mands, via the serial link, for the controller to carry out, and
receive responses from the network e.g., sensor messages.

iot Proxy
To allow the controller and Cache to communicate, a suit-
ably designed proxy is necessary. TinyOS provides the nec-
essary libraries to facilitate mote-to-PC communication for
a variety of languages, including Java, Python and C. These
libraries communicate over the serial link to the mote and
translate the incoming packets to the correct format and en-
dianness. Due to the abundance of documentation available,
the proposed proxy design is implemented using the Java li-
brary. Similarly, the relevant libraries and support are also
available for the Cache, which use RPC, in Java.

Within the Java-based proxy, there are two threads:

• A receiver thread which receives incoming packets from
the iot network and then inserts the relevant messages
formatted as tuples into the Cache, e.g., sensor 2 tem-
perature is 22C.

• A sender thread that registers automata to the Cache
and then receives messages from these automata, such
as alerts and commands, and forwards them to the con-
troller to be actioned within the network e.g., sensor 2
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is too hot, turn down the thermostat.

Homework Cache
The Cache combines both publish/subscribe and stream data-
base concepts, to create a powerful and flexible complex
event processing engine. Within the cache, automata, writ-
ten in the Glasgow Automaton Programming Language (GAPL),
are used to detect complex events patterns which occur over
the cached streams and relations within the database. As
previously mentioned, the proxy registers automata against
the cache, after which, the automata subscribe to the nec-
essary topics within the Cache; each time a tuple is inserted
into a relevant topic stream in the Cache by the receiver
thread, automata subscribed to this topic receive an event
containing the tuple. The automaton can then process the
tuple, lookup/update/insert tuples into relational tables or
streams within the database and then, if necessary, send a
relevant event to the sender thread, to be forwarded to the
iot network.

This enables the iot closed-loop of control to not only
obey simple rules, such as the temperature falling below a
set limit, but also allows for complex patterns to be ascer-
tained over longer periods of time, such as detecting when
users are home most often and adjusting the heating appro-
priately before they arrive home. Similarly, because of the
dynamic nature of automata, which can be registered and
removed freely during run-time, new rules can be added and
old ones modified easily, evolving in-sync with the user and
their lifestyle.

Automata
Automata, programs written in the GAPL programming
language, use memory and control structures exposed by the
language, in a similar fashion to C, rather than more tradi-
tional declarative languages, such as SQL, which consist of
predefined and nested queries. Additionally, automata are
not only able to maintain local state, but are also able to in-
teract with state in event streams and relational tables, both
locally and remotely. These key concepts enable program-
mers to perform dynamic and complex pattern matching
over high-speed data streams, whilst also maintaining per-
sistent stores of selected data, in the form of relations. The
rest of this section will describe a simple automaton designed
for testing the iot integration architecture and describe some
of GAPL’s features in more detail.

Figure 4 shows a basic automaton which reports back to
the proxy when a Thing, which senses temperature, has sent
a temperature that has exceeded its set limits, previously set
by the user via the proxy. In this example, the automaton
subscribes to the Temp topic by binding it to a local variable
t. This enables it to receive an event, containing a Thing ID
and temperature reading, every time it is delivered to the
Temp topic e.g., Thing 2 senses 22C. Similarly, associations
allow the automaton to access and modify persistent tables
via lookup and insert calls, in this case the TempLimits ta-
ble, containing upper- and lower-bound limits for each tem-
perature sensing Thing. The behavior clause allows the au-
tomaton to interact with the aforementioned subscriptions
and associations each time a temperature event occurs; upon
receiving an event, the automaton attempts to find upper-
and lower-bound limits for the event’s Thing ID; if found, it
checks to see if the event’s temperature reading has exceeded
the limits and, if so, notifies the process which registered the

automaton via a send call, passing with it the related data
and a relevant message.

To extend this, a further association could be made to an
average temperature table, allowing the automaton to log a
Thing’s temperature over a period of time, potentially us-
ing this data to inform the registered process or manipulate
other streams or tables.

subscribe t to Temp;
associate l im i t with TempLimits ;
ident i f i er id ;
sequence s ;
behavior {

id = Ident i f ier ( t . s r c ) ;
i f (hasEntry ( l im i t , id ) ) {

upperLimit = seqElement ( lookup ( l im i t , id ) , 2) ;
lowerLimit = seqElement ( lookup ( l im i t , id ) , 3) ;
i f ( t . temp >= upperLimit ) {

s = Sequence ( t . src , t . temp , upperLimit ) ;
send ( s , ’ temp exceeded upper l im i t ! ’ ) ;

}
e l s e i f ( t . temp <= lowerLimit ) {

s = Sequence ( t . src , t . temp , lowerLimit ) ;
send ( s , ’ temp below lower l im i t ! ’ ) ;

}
}

}

Figure 4: Temperature limit automaton

3.5 Security
In this section we present the design of our security pro-

tocol, enabling new devices to join the network without the
need of a shared secret or any physical interaction with the
controller. As discussed later in section 7, there are many
existing security protocols available for TinyOS, including
TinySec [19] and MiniSec [24] for symmetric cryptography
and TinyECC [23] for asymmetric cryptography, as well as
a variety of other key distribution schemes [14,21,26–28,31,
33]. The security protocol design we propose does not claim
to demonstrate a completely new protocol, but is instead a
novel combination of the previously described work, MiniSec
and TinyECC, based on a conventional security algorithm,
Transport Layer Security (TLS), commonly used in desktop
machines today.

The key problem with previous approaches to WSN se-
curity is key distribution, in which approaches either as-
sume that a network-specific shared secret, key or ID is pre-
installed onto some or all of the nodes and thus distribution
is not an issue, or the structure of the network is planned
and predetermined, with designated high-power nodes to aid
in distribution, see section 7. However, this is impractical
for networks containing many tens of nodes, entering in a
piecemeal fashion and for administration by a novice user ex-
pecting device installation to be simple. Thus, a secure key
distribution method must be devised to ensure new nodes
can join the network without the need to be reprogrammed.

To solve this problem we propose the security protocol
design described below and in figure 5. Our design attempts
to alleviate complex physical interactions between devices
performed by the user [21] and remove the need to design
and configure the network, which for the average home user
would be non-trivial. Later sections, 4 and 5, describe the
choices made in designing this protocol.

Prior to deployment, nodes will need to be bootstrapped
with unique public/private key pairs, a public key certifi-
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cate and the CA’s public key. In a commercial scenario
this would require cooperation with trusted manufacturers
to create these keys and certificates. After this the protocol
is as follows:

1. Initiate discovery mode on the node; node now accepts
and verifies incoming certificate requests.

2. Initiate query on controller; controller sends a broad-
cast query with its public key certificate.

3. The sensor receives the request with the certificate,
verifies its authenticity using the CA public key and, if
successful, it sends a response with its own certificate.

4. The controller receives the response with the sensor’s
certificate, verifies its authenticity using the CA public
key and replies with an acknowledgement.

5. The sensor receives the response ack, generates a ran-
dom nonce value (to protect against replay attacks),
then encrypts it with the controller’s public key and
signs it with its own private key before sending it to
the controller.

6. The controller receives the signed and encrypted nonce.
It first verifies the signature; if invalid it can either re-
quest the nonce again or abort the key exchange and
waste no further resources. Otherwise it then decrypts
the nonce value. The controller then generates a new
symmetric key, encrypts it and the nonce with the sen-
sor’s public key and signs with its own private key.

7. The sensor receives the signed and encrypted key and
nonce. It first verifies the signature; if invalid it can ei-
ther request the key response again or abort the key ex-
change. Otherwise it then decrypts the key and nonce
value, verifying that the nonce is equal to the one it
sent earlier, confirming the key response has not been
replayed. Using the symmetric key, the sensor then ini-
tialises the symmetric encryption code and then sends
a handover message, encrypted using the symmetric
key, to the controller to signal it has received the key
and is ready to communicate using it.

8. The controller then receives the symmetric handover
message, decrypting it to confirm its authenticity, and
replies with an acknowledgement, also encrypted using
the symmetric key. The two devices can now commu-
nicate securely using the symmetric key.

4. ASYMMETRIC SECURITY

4.1 TinyECC
To enable secure key distribution, asymmetric cryptogra-

phy provided by elliptic curve cryptography (ECC) using
TinyECC [23] is used. Whilst TinyECC demonstrates the
feasibility of using software-based public key cryptography
via ECC on low-power microcontrollers, it is still extremely
expensive in respect to code size (>15KB), RAM utilisa-
tion (3KB) and operational speed, taking up to 5 seconds
per operation. Therefore, it’s necessary to use it as little as
possible and switch over to the far cheaper symmetric key
cryptography to keep the connection secure for the rest of
its lifetime, in which encrypt and decrypt operations take
<2ms.

Figure 5: Security protocol sequence diagram

4.2 Denial of service protection
Because of the significant cost in verifying a certificate,

it would be possible for an attacker to perform a denial of
service attack on a node by sending it fake certificates. To
reduce the severity of this attack, Things in the network
will only accept and process asymmetric packets during a set
window of time after the user presses a button on the device.
This also provides demonstrative identification for the user,
enabling the user to physically control and understand which
devices are communicating, similar to WIFI protected setup
(WPS) built into commodity home routers.

4.3 Man-in-the-middle protection
However, using TinyECC alone will not ensure authenti-

cation and won’t protect against man-in-the-middle attacks.
To perform authentication we propose the use of an offline
trusted certificate authority (CA) to create public key certifi-
cates for nodes. These certificates are then installed on the
nodes at compile time along with the node’s private/public
key pair and the CA’s public key. This enables new nodes
to have their public key certificate authenticated by other
nodes using the CA’s public key, before the node’s respec-
tive public keys are used to exchange the key. This allows
nodes to join any network without a previously bootstrapped
shared secret symmetric key, unlike other pre-deployment
approaches which would require re-bootstrapping the node
with the new shared secret symmetric key each time the
node joined a new network.
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After the nodes have verified each other’s authenticity,
they are then able to exchange the symmetric key in secret
using asymmetric encryption and decryption, followed by
handing the connection over to use just symmetric cryptog-
raphy.

4.4 Optimisations
To enable ECC to operate within reasonable time bounds

on microcontroller platforms, such as the TelosB mote, var-
ious optimisations were made in TinyECC, which uses pre-
computed tables and values created at initialisation to speed
up the cryptographic operations. When using TinyECC to
perform encryption and authentication, the state computed
by these operations overlaps, requiring re-initialisation be-
tween operations. To reduce this overhead, we implemented
state saving and switching, requiring initialisation to be per-
formed only once for each encryption and authentication
module, saving valuable seconds over the entire key exchange.
The benefits are further detailed in the evaluation in section
6.

4.5 Asymmetric costs
Whilst the overarching aim of our iot protocol is to min-

imise transmission and save as much power as possible, due
to the use of asymmetric cryptography for public keys and
certificates in which keys and certificates are 40bytes and
20bytes, respectively, large packet sizes are unavoidable. Sim-
ilarly, whilst TinyECC makes public key computations fea-
sible on embedded devices, combining them in our proposed
protocol to provide both authentication and encryption over
an insecure channel for the key exchange results in a one-
time high cost, taking less than a minute to complete. How-
ever, because it’s only performed once, the high initial cost
is amortised over the lifetime of the node.

5. SYMMETRIC SECURITY

5.1 Block cipher algorithm and mode of oper-
ation

After the handover has occurred, symmetric cryptography
is used to keep the connection secure for the duration of its
lifetime. The symmetric cryptography used is based on the
MiniSec implementation ported from Rogoway et al’s Off-
set Code Book mode of operation (OCB) [29] and Law et
al’s Skipjack block cipher algorithm [22] implementations.
However, due to the inadequacy of various parts of the ex-
tended implementation by MiniSec [6], including being writ-
ten for TinyOS 1.0, allowing only one encrypted connection
per node, various memory allocation bugs and inefficient ini-
tialisation vector (IV) synchronisation, much of the code was
rewritten to work correctly and more efficiently for TinyOS
2.1.

5.2 Man-in-the-middle and Masquerading pro-
tection

Similar to the asymmetric component of the protocol, to
prevent man-in-the-middle and masquerading attacks, au-
thentication is necessary, ensuring that a message sent from
a Thing in the network is genuine and hasn’t been tampered
with in transit. To do this a message authentication code
(MAC) block needs to be generated from the encrypted data.
Unlike cipher block chaining (CBC) and CBC message au-
thentication code (CBC-MAC), which encrypt/decrypt and

authenticate the data independently using two unique keys,
we use the offset code book (OCB) mode of operation for
block ciphering, enabling both encryption/decryption and
authentication to be completed in one pass over the data
using just one key, realising a slight decrease in time [14]
and significant saving in space used for storing the key.

5.3 Semantic security
In order to ensure semantic security, in which duplicate

packets don’t encrypt to the same ciphertext, a 64-bit mono-
tonically increasing IV is used for each connection. This
would normally require the 64-bits IV to be transmitted to
the receiving node, which is extremely costly when attached
to each packet. However, using the last bits (LB) optimi-
sation coined in MiniSec, we are able to just transmit the
last n bits of the counter and with some resynchronisation
logic on both ends, withstand packet loss of up to 2n packets
before resynchronisation occurs. In our protocol we chose to
send the last 6 bits of the counter, due to sharing the byte
with another field. In the case of the IV wrapping around,
to remain semantically secure the controller only needs to
generate a new symmetric key and distribute it before the
wrap occurs.

When MiniSec was developed, Skipjack was chosen as the
underlying block-cipher due to its efficient implementation
and low memory footprint [22]. However, Skipjack uses a
maximum key length of 80-bits, which as of 2010 NIST clas-
sifies as insecure for long term use [7]. As a temporary mea-
sure, the controller can choose to re-issue a new session key
for each node after an arbitrary period of time.

6. EVALUATION
To evaluate our proposed protocol we observed several

key attributes related to our initial requirements of an effi-
cient, lightweight protocol that attempts to minimise radio
transmission. The rest of this section will discuss the iot
implementation size for the various roles, followed by the
packet overheads compared to other existing protocols, the
key exchange timings with the related optimisations to ECC
and lastly, the overall end-to-end system performance.

Things, specifically sensors and actuators, are expected to
run on low-power constrained devices, thus it’s paramount
to ensure an iot protocol not only fits within the constraints
of a typical Thing, but that it also leaves adequate space for
applications to be built on top of it. Table 1 shows the im-
plementation size, ROM and static RAM, across the three
roles. In the current implementation the actuator demon-
strates the lowest overhead with only the iot protocol and
LED library linked into the TinyOS compile, leaving approx-
imately 13KB ROM and 4KB RAM for applications. Given
that actuators and sensors are only expected to compute
very little, this should provide significant space for applica-
tions, except, perhaps, in the case when local filtering is nec-
essary; this is demonstrated by the sensor role which shows
a significant increase in the ROM size due to the inclusion
of the temperature libraries for TinyOS; however, it is still
well within the constraints of the environment. Lastly, the
controller role demonstrates the largest size, due to the ex-
tra processing and state involved in managing the network.
Unlike the sensor and actuator, the controller is not defini-
tively bound by the same constraints, and is expected to run
on a more powerful device. Whilst old, the TelosB mote still
represents a middle ground for embedded devices in terms
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of ROM and RAM, compared to the popular Arduino plat-
form sporting only 32KB ROM and 1-4KB RAM2. However,
recent MSP430 and ARM microprocessors have significantly
increased amounts of storage available, up to 512KB ROM
and 64KB RAM.3

The most important requirement of our protocol is to min-
imise radio transmission; in order to ensure this, we not
only try to decrease the number of packets sent, but also
the size of the packets. In table 2 we compare our packet
header overheads against the popular and one of the most
significant IoT protocols, 6LowPan combined with the se-
curity extension, AES-CCM. For traditional 802.15.4 radio,
the maximum advised packet size is 128-bytes. 6LowPan,
a minified IPv6 protocol, compresses its normally 128-bit
addresses to 64- or 16-bit addresses in order to reduce its
overhead. Within a smaller number of bytes compared to
an un-encrypted 6LowPan packet with 16-bit addresses, our
proposed protocol is able to also ensure that a packet is both
secure and authenticated, adding only 4 bytes of overhead
to an un-encrypted packet for the MAC. In the current im-
plementation there is still room for possible improvement,
as demonstrated by MiniSec which discussed removing the
group and crc fields from the TinyOS packet, reducing the
overhead by a further 3 bytes.

In order to create a user-friendly, dynamic and flexible
key distribution scheme, we opted to use public-key cryp-
tography with TinyECC. In section 4, we argued that whilst
TinyECC still exhibits a considerable cost in terms of stor-
age, speed and overhead, the full key exchange only has
to be performed once and is amortised over the lifetime of
the node; subsequent key exchanges could use the existing
symmetric-secured channel. Table 3 shows the average time
for switching between modes and the overall time for the
entire key exchange outlined in section 4. TinyECC uses
precomputed tables and values based on the public-key to
be used for an operation, thus when using different public-
keys multiple times to perform a sequence of encrypted and
authenticated actions, such as in the proposed iot proto-
col, these tables need to be recomputed each time in order
for them to be effective; this adds a significant overhead of
around 20 seconds between the communicating nodes. To
reduce this, we added an optimisation to save previously
initialised state, thus removing the need to recompute the
state for a given public-key the next time it is used; this
gives us a fully authenticated and secure key exchange tak-
ing just under a minute to complete, split between the two
nodes. Because the ECC computations are split between
the two nodes, porting the controller role to a more power-
ful platform would significantly reduce the exchange time,
further minimising the time the sensor/actuator node needs
to power and listen on the radio.

Lastly, table 4 presents a break-down of the system perfor-
mance, providing average timings and their standard devia-
tions for each part of the system. Rows a and b show the av-
erage timings for encrypt and decrypt operations of 4 bytes,
including header fields and a 1 byte payload (e.g., sensor
reading); contrasting this to row c, which presents the aver-
age time for an RPC call (consisting of two messages, each
with 4 bytes encrypted), shows that the encryption/decryp-

2Arduino Uno - http://arduino.cc/en/Main/
ArduinoBoardUno
3FreeScale ARM - http://www.freescale.com/webapp/
sps/site/taxonomy.jsp?code=KINETIS_L_SERIES

tion operations only add around 8ms of overhead for each
message, with the sending/receiving of a message averaging
26ms. Row d shows the length of time taken for the proxy to
publish a sensor reading to the cache, followed a subsequent
send() call made by a subscribed automaton which issues a
command back to the proxy, based on the received reading.
Row e includes c, with the addition of the sensor reading now
propagating from the controller through e and back, via the
serial link; similar to c, the serial link adds a significant over-
head, taking around 19ms for a message to pass from the
controller to the proxy. Lastly, to capture the end-to-end
time, from sensing to actuation, row f combines rows c and
e, in which the RPC is split across the sensor→controller
and controller→actuator messages. Thus, the closed-loop
of control takes 109ms from sensing to actuation4. Due to
the non-time-critical nature of an iot, providing sub 100ms
response-times isn’t necessary, thus, the overall performance
is sufficient to provide a suitably real-time iot.

As described in section 3.3, ensuring reliability, for some
messages, and liveness, for all connected Things, is impor-
tant for the iot to operate correctly and responsively. In
the case of sensors, readings are non-critical and expected
to occur frequent enough such that the iot won’t be affected
by occasional packet loss; thus, in the case of packet loss the
closed-loop of control is only potentially delayed, if the read-
ing isn’t redundant, by the sensing frequency. However, in
the case of the actuator, commands issued by the controller
are sent reliably. Thus, if a packet is dropped, retries occur
after a set period, exponentially increasing until the com-
mand is either acknowledged, or the controller has deemed
the actuator is completely unresponsive and has potentially
died. In the current design, the sender waits for 40ms for a
response before retrying, doubling this wait, either until the
receiver replies or the number of attempts reaches 5. The
initial wait of 40ms ensures the receiver has sufficient time
to decrypt larger encrypted payloads. In the case of a single
packet loss, the response time increases to around 253ms; in
the worst case of 5 packets lost, the response time increases
to 918ms, which still ensures a reasonably responsive per-
formance with respect to the non-critical nature of an iot.

7. RELATED WORK

7.1 IoT protocols
Given the recent surge of popularity for the Internet of

Things, many developers, manufacturers and standards bod-
ies have attempted to create a solution for their view of
the IoT, each differing greatly and often being proprietary
within their own ecosystems.

The IETF Core working group have proposed a new stan-
dard, the Constrained Application Protocol (CoAP) [15],
which aims to coerce Things within the IoT to fit into the
traditional RESTful client-server architecture that is com-
monplace on the Internet today, removing the need for spe-
cialised platforms or applications to access them. The pro-
tocol is built to operate on unreliable UDP links, providing
support for reliable delivery on top when needed. In an at-
tempt to be power-friendly, services can subscribe to Things,

4An additional ack is also sent by the actuator, but this
does not have an effect on the response time of the actuation
itself.
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Secure iot Protocol
Controller Sensor Actuator

ROM size 38,178B (80%) 41,016B (85%) 34,988B (73%)
RAM size 7372B (74%) 6,208B (62%) 6,142B (61%)

Table 1: Secure iot protocol size for Controller, Sensor and Actuator roles on the TelosB (8Mhz, 48KB ROM, 10KB RAM)mote.

TinyOS + Secure iot Protocol 6LowPan + AES-CCM
Cleartext header 14B + 6B 25B
Encrypted header 14B + 10B 46B

Table 2: Comparison of payload overhead for our Secure iot (Symmetric security payload) vs 6LowPan with 16-bit addresses
+ AES-CCM.

TinyECC TinyECC + optimisations
Authentication to Encryption 1.4s 0s
Encryption to Authentication 2.5s 0s

Asymmetric key exchange 80.4s 57.1s
Table 3: Comparison of the module switch over and overall asymmetric key exchange durations with normal TinyECC and
TinyECC with the save state optimisations implemented.

Closed-loop flow Mean time σ
a) Symmetric encrypt sensor message (4 bytes) 5ms 0ms
b) Symmetric decrypt sensor message (4 bytes) 2.9ms 0.3ms

c) Thing → Thing RPC (symmetric encrypt/decrypt) 68.9ms 5.8ms
d) Proxy → Cache/Automaton → Proxy 1.1ms 0.9ms

e) Controller → Proxy → Cache → Proxy → Controller 40.4ms 1.5ms
f) Sense → Cache → Actuate 109.3ms 6ms

Table 4: A break-down of the steps within the closed-loop flow of control from sensing through to actuating, showing the
mean time and standard deviation (σ) for each step of 200 samples.

such as sensors, instead of polling for updates from these de-
vices, allowing them to save power and enter sleep modes.
Whilst bringing Things into the client-server architecture
eases the adoption of such devices, it forces them to adopt
an architecture that simply isn’t suited for them consider-
ing their low-power constraints, placing restrictions on their
availability, reliability and resources. Similarly, it also po-
tentially poses serious security risks if simply plugged-in to
the Internet [1].

Building on top of this, the OpenWSN project at UC
Berkeley proposes a software stack sitting on top of an 802.15.4
enabled device and below CoAP/HTTP, consisting of 6Low-
pan, a compressed IPv6 for embedded devices, combined
with RPL, an IPv6 routing protocol for lossy wireless net-
works and TCP/UDP transport protocols.

As previously discussed, many manufacturers have inte-
grated power-hungry WIFI chipsets and connect the devices
directly to the Internet or to their Cloud service [2, 8, 11],
without significant consideration for the power and security
issues that result. Whilst these devices gain the power and
connectivity of the cloud, this couples them directly to it,
and increases the chance of failure, due to services going
down, limited Internet connectivity and potentially raises
issues regarding data ownership and privacy/loss [9]. Addi-
tionally, as a result of this direct Internet and Cloud connec-
tivity, devices needlessly waste power and are at a greater
risk to security threats [1, 5].

7.2 WSN Security

There have been several different attempts to efficiently
secure WSNs [14, 19, 21, 23, 24, 26–28, 31, 33], however none
match the iot requirements enumerated in section 3.3.

TinySec [19], a symmetric cryptography library for TinyOS
1.0, was an initial effort on TinyOS to address security, in-
tending to demonstrate that software-based cryptography
was possible on constrained devices with minimal power
overhead. To achieve this, TinySec was designed around
WSNs’ extreme resource constraints, taking advantage of
some of these constraints, such as the limited networking
bandwidth, optimising the security primitives in order to
reduce the security overhead added to each packet. One
such optimisation was the use of a reduced initialisation vec-
tor for the cipher block chaining mode of operation, which
combined several of the existing header fields and added a
2 byte counter, ensuring the initialisation vectors wouldn’t
clash between nodes sending the same packet. Whilst the
IV is significantly smaller than conventional security proto-
cols, which would reduce time until IV reuse, TinySec argued
that this wasn’t an issue, demonstrating that using an av-
erage send rate of 1 packet per minute, IV reuse would not
occur for 45 days.

MiniSec, another symmetric cryptography library for TinyOS
1.0 and a successor to TinySec, was created to further im-
prove the security provided by TinySec, adding replay pre-
vention and also improving upon the minimal security over-
heads which TinySec achieved. To achieve the increase in
security, MiniSec chose to increase the initialisation vector
size from 2 bytes to 8 bytes, however, instead of transmit-
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ting the whole 8 bytes, MiniSec sends only the 3 last bits
(LB) within the pre-existing packet length field, thus incur-
ring no additional overhead for the IV on top of the nor-
mal TinyOS packet. To ensure the LB optimisation works
correctly, both communicating nodes must maintain state
for the counter and perform counter resynchronisation upon
significant packet loss (>23 packets). This counter state is
also used to ensure replay prevention, requiring all received
packets to have a higher IV than the local state.5

Until recently, asymmetric security, namely RSA, was deemed
infeasible on microcontroller platforms, taking on the order
of tens of seconds to complete public key operations [23].
However, this is no longer the case with the development
of elliptic curve cryptography (ECC), in which not only are
public key operations feasible within several seconds, but
key lengths are reduced whilst still providing the same level
of security as longer keys in more traditional asymmetric
algorithms such as RSA.

There are many other complex key distribution schemes
which require hierarchical networks of devices [28, 31] and
predetermined deployment strategies to enable efficient key
distribution. Rahmun et al present a solution for such a hi-
erarchical network [28], consisting of a network of heteroge-
neous nodes, in which high-resource nodes store node IDs for
surrounding low-resource nodes and provide authentication
for the key exchange process between low-resource nodes
using ECC. However, this scheme requires expensive high-
resource nodes that need to have the low-resource nodes’
IDs stored ahead of time, and also need to be tamper resis-
tant to protect against node capture, further increasing the
cost. Another viable alternative, pairings-based key distri-
bution schemes, such as TinyPBC [26], provide efficient key
pairings (<5s) but require nodes to know each other’s ID a
priori, which can prove difficult to do with authentication.

Other proposed key distribution schemes such as TinyPK
aim to sacrifice immediate authenticity and security on the
mote by only performing the public key operations on the
more powerful server side [33]. In contrast, Message-in-a-
bottle [21] relies entirely on a portable faraday cage like
barrier to allow devices to secretly communicate in the clear.
Whilst it achieved the goal of distributing keys, it sacrifices
elegance, usability and scalability, by having to manually
place devices inside a lead pipe each time a key needs to be
issued.

8. CONCLUSION
Our proposed model and protocol demonstrates a thought-

ful approach to designing a secure and efficient Intranet of
Things. Compared to other approaches which have used
power-hungry WIFI or heavyweight protocols, our protocol
attempts to minimise radio usage on 802.15.4 platforms, in
an effort to prolong the lifetime of battery-powered Things.
In light of existing and recent M2M/IoT attacks, our proto-
col has been secured against a variety of attacks, ensuring
the user’s data, privacy and, most importantly, home is safe
from remote control, monitoring and other malicious activ-
ities. The protocol also demonstrates a usable, secure and
scalable method for enabling users to add new devices to the

5Whilst the MiniSec paper presented an efficient symmetric
cryptography protocol design, the corresponding implemen-
tation provided at [6] does not appear to function correctly
(with various runtime issues) or implement the IV counter
using the LB optimisation described.

network, without the need for network-specific pre-shared
secret keys or complex configuration, via the use of public
key cryptography, provided by TinyECC.

Additionally, by integrating our iot protocol into the Home-
work Cache locally, the closed-loop of control can be fully
realised, providing the possibility for dynamic and power-
ful interactions between the user and Things located around
the home, without the privacy and reliability risks associ-
ated with the Internet and Cloud. The implementation was
developed for the TelosB mote running TinyOS, and the
source code has been made available online6.

9. FUTURE WORK
Whilst we have presented a solid foundation for the iot,

in the form of a secure and efficient protocol integrated into
the Homework platform, there are many possible extension-
s/improvements. This includes porting the controller role
to more powerful hardware, as assumed in section 3.1, such
as a PC or router running Homework, porting the sensor
and actuator roles to other low-power platforms, and imple-
menting ad-hoc multi-hop routing. These extensions would
enable the network to easily scale up to handle hundreds of
devices over large and interference-prone areas. Addition-
ally, the current support for customising rules requires pro-
gramming skill and knowledge about GAPL, thus it will be
necessary to implement a user-friendly rule designer, similar
to what Homework already uses [17]; or attempt to remove
the interface almost entirely, using intelligent agents and ma-
chine learning to analyse and predict the user’s needs within
the home [16,18], removing the need for users from having to
perform the difficult task of trying to create the perfect rules
or update existing rules as patterns change e.g., a change in
weather or timetable. Lastly, the security against brute-
force attacks needs to be improved by replacing the now
out-dated Skipjack block cipher algorithm with the more
secure AES algorithm [7]. However, improving the security
will inevitably affect the performance of the protocol due to
the increased computational time for encryption and decryp-
tion, thus, the reliability measures will need to be adjusted
to ensure retries don’t occur when the receiver is encrypt-
ing/decrypting data.
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M. Scott, D. F. CÃćmara, J. LÃşpez, and R. Dahab.
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Abstract—The Internet of Things (IoT) is a rapidly growing
area of computing, with manufacturers rushing to market and
standards bodies sticking to tried and tested architectures.
However, when considering an Internet of Things within the
home, many of these activities are ill-thought out, inappropriate
and even possibly physically dangerous, as evidenced by various
attacks [1], [2]. We introduce the concept of an Intranet of
Things (iot) by defining a suitable model and device roles to
represent the ecosystem of devices typically found within an
Intranet of Things. We subsequently present a secure iot protocol
implemented on the TelosB mote for TinyOS, which enables
users to easily and securely add new Things to the network with
minimal configuration, as well as protect the devices, data and
user privacy against common attacks.

I. INTRODUCTION

The modern home is becoming increasingly filled with a
variety of connected devices, each providing myriad differ-
ent and often overlapping services within the home. More
recently, “smart-appliances” and the Internet of Things have
begun to enter our homes, attempting to digitize our already
existing “dumb-appliances” and objects within the home. As
these devices enter our homes, in an often piecemeal fashion,
bringing with them their own distinct ecosystems, protocols
and standards, the user is faced with the increasingly difficult
burden of managing this network of heterogeneous devices.
Due to the sheer number and diversity of these devices,
problems arise with respect to how these devices co-operate,
as well as how to ensure the user’s network and information
remains secure against new and unanticipated threats.

Many such devices present a severe lack of thoughtful
integration into existing networks, infrastructure and the tech-
nology into the devices themselves. Existing approaches either
integrate traditional power-hungry 802.11 WIFI chipsets or
run 6LowPan, a scaled down IPv6 for low-power 802.15.4
radios. However, both of these approaches can severely limit
the lifetime of a battery-powered device. With TCP/IP built
into these devices, naturally, many of them offer services
directly to the Internet [3]–[5] or connect to a cloud service
[6], [7]. Whilst this reaps the benefits of anywhere access and
scalable compute power/storage, it opens up multiple points of
failure by relying on such connectivity to the Internet or Cloud,
including reliability, security, privacy and data-ownership; such
an approach has already resulted in attacks similar to that of
Stuxnet [2].

In this paper we present a solution for creating a low-power
and secure Intranet of Things (iot) for the home, by designing
an entirely new protocol with a realistic iot model, described in
section III-C, in mind and taking advantage of a combination of
symmetric and asymmetric cryptographic algorithms, as well

as primitives to enable efficient, secure and authenticated entry
into a new network with minimal user configuration.

The main contributions of this paper are:

• An Intranet of Things model describing three equiva-
lence classes of Things and their operational semantics
within the network.

• The design and implementation of a secure, fit-for-
purpose iot protocol, implemented over TinyOS run-
ning on TeloB motes.

• A user-friendly security scheme for low-power Things,
using symmetric and asymmetric cryptography to en-
able new trusted devices to enter the network securely
while minimising user interaction and configuration.

II. MOTIVATION

A. A Secure Intranet of Things Protocol

In recent years the Internet of Things has resurfaced, from
its beginnings as RFID-tracked products in a warehouse stock
floor, transformed into embedded low-power wireless devices
in everyday objects around, us under the guise of “smart-
appliances”. Many manufacturers have rushed to market with
new smart devices to replace our old unintelligent ones, but
in so doing, they’ve integrated these devices and services into
our home networks and the Internet without much thought or
consideration for the device’s and network’s power, reliability,
security and privacy.

The first problem this paper addresses is that many cur-
rent approaches have integrated expensive wireless chipsets
and/or heavyweight/inefficient protocols (IPv6/6Lowpan, TCP,
MQTT [3], [8]) into Things, or simply manipulated Things
to fit into the traditional RESTful client-server architecture
[9]. However, given that many of these Things are expected
to run unattended on battery-power for as long as possible,
these approaches are largely inappropriate. Therefore, it’s nec-
essary to engineer a new, lightweight, power-efficient protocol,
specifically tailored for the typical iot model discussed later in
section III, which also scales well as the number of devices
inevitably increases.

Our model and protocol targets a network of Things within
the home, with devices communicating and forming the closed-
loop of control locally, as opposed to in the Cloud; thus, in
lieu of an Internet of Things (IoT), a more suitable name, an
Intranet of Things (iot), will be used.

B. Security

In the context of an iot, security is of paramount importance
due to the rich and sensitive nature of the data that sensors



gather, as well as the level of control available from actuators.
In a similar fashion to how Stuxnet was directly targeted at
machine-to-machine (M2M) networks [10], recently there have
been several significant attacks targeted towards IoT devices
[1], [2]. For example, over half a million users’ Belkin IoT
devices and home networks were vulnerable to attackers being
able to remote control and monitor these devices, as well
as allowing attackers access to the home network [1]. This
resulted in risks ranging from electricity wastage, to presence
monitoring and, in severe cases, possibilities of home fires
being caused by the appliances attached to these devices.

Thus, the second problem this paper attempts to address is
securing an iot to ensure the user’s devices, network and data
are protected against possible attacks and also allow new “ap-
proved” devices to join the network with minimal user effort
and interaction. Due to the scale of an iot network, containing
potentially tens if not hundreds of devices, this needs to be
possible without the user being required to manually configure
each device with a security key.

Deployable security in wireless sensor networks continues
to be a significant problem for several reasons. Firstly, power
is a major concern in wireless sensor networks (WSN); thus,
running expensive conventional cryptography algorithms in
order to keep transmitted data secret can be detrimental to the
lifetime of a node. Secondly, WSN nodes are often extremely
constrained in terms of memory (ROM/RAM), requiring cryp-
tography algorithms to fit within extreme size constraints and
is especially problematic when trying to reduce computational
load by storing pre-computed tables. Lastly, being able to
dynamically add new nodes to a network post-deployment, as
well as (re)distribute keys for the network, enables the network
to scale, replace failed nodes and protect against attackers.
Previous work has demonstrated various solutions to the first
and second part of this problem [11]–[13], but have largely
ignored the third part, assuming that keys or shared secrets
are distributed at install time.

The types of attack to which IoT networks are vulnerable
are:

• Eavesdropping - An attacker can overhear messages
broadcast by nodes in the network, using the informa-
tion learned to potentially perform a physical attack
(when house doors are unlocked), or log for later
analysis (activity monitoring).

• Masquerading - An attacker masquerades as a legit-
imate node within the network and is able to inject
packets as well as abuse the closed-loop of control
within the network with potentially dangerous con-
sequences e.g., transmit cold temperature readings to
trick the boiler to increase the temperature.

• Man-in-the-middle - An attacker intercepts communi-
cations between two nodes and is able to overhear,
manipulate and inject packets without either node
detecting it.

• Replay - An attacker records messages between nodes
in the network and rebroadcasts them in an attempt to
manipulate the network. This attack can be performed
even when packets are encrypted.

• Denial of service - An attacker abuses the resources
available on a node by overwhelming it with expensive
operations e.g., verifying a certificate.

• Node Capture - An attacker captures a node and can
retrieve data/keys stored on the device, potentially
compromising the security of the network.

III. DESIGN

The design of our secure iot protocol largely consists of
two parts, the core iot protocol, which encapsulates the iot
model, and the security protocol which ensures secure packet
transport and entry into the network. This section will first
describe our assumptions, followed by the design of the iot
protocol and security scheme, respectively.

A. Assumptions

In designing the iot protocol, the following assumptions
were made:

• The controller role is implemented on a PC and has
sufficient resources available to process and store a
large number of public keys for nodes within the
network.

• Typical raw sensor data is non-critical, ephemeral and
frequent enough such that occasional packet loss is
acceptable. Additionally, we expect the network to
be sufficiently well engineered, such that a sufficient
percentage of packets are received to provide utility.

• The controller has sufficient resources available to
generate and store secure pair-wise session keys for
each node in the network.

• Things are typically retrofit into existing homes and
structures, thus connecting these devices directly to
power lines is impractical in most cases; instead
Things must rely on battery-power and are expected
to run for as long as possible.

• The network is deployed over a geographically small
enough area, the home, such that it’s unnecessary to
perform packet gathering and compression between
the source sensor and sink controller. Thus, inter-
mediary nodes need not store keys for each of the
surrounding nodes and can, if necessary, forward any
encrypted packets received towards their destination.

• The majority of nodes deployed in an iot are situated
within a secure property e.g., the home or office; due
to the increased cost of tamper-proofing nodes, node
capture is not deemed to be a significant issue and
will not be mitigated against in this security protocol.

B. Hardware and Software Platforms

Whilst many newer and more powerful sensor platforms
are available today, much of the existing work for WSNs and
WSN security has been developed for the TelosB mote, a 8Mhz
TI MSP430 microcontroller with 48KB ROM and 10KB RAM
due to its low-power operation and TinyOS support. TinyOS is
a lightweight operating system designed for embedded devices
in WSNs and has strong support in academia, with many
libraries and tools available.



C. iot Protocol

In the design of an improved and fit-for-purpose iot proto-
col, we attempt to minimise radio usage in order to maximise
the lifetime of a battery-powered Thing, sacrificing reliability
where appropriate, whilst still ensuring robust and predictable
operation. In this section, we first present the architectural
model of a typical iot network, followed by the key design
areas for achieving these goals within the protocol: reliability,
integrity, liveness, minimising packet headers and ensuring
correct operational semantics (at-most-once).

iot Model: Within the Intranet of Things ecosystem, three
distinct equivalence classes of devices exist:

• Sensors, devices which sense and receive input from
the real world or another service, such as temperature
sensors, presence sensors etc. Data from these devices
is typically periodic, thus non-critical, only requiring
integrity and not complete reliability.

• Actuators, devices which represent physical or digital
outputs, such as displays, lights and functions on
appliances, that present an RPC interface for a con-
troller to call. Functions provided by these devices are
expected to be carried out once and only once when
requested, thus reliability and acknowledgements are
needed to ensure reliable operation.

• Controllers, typically one device such as a PC or
home router, which queries, connects and manages
the network of sensors and actuators, orchestrating the
closed-loop of interaction between sensor inputs and
actuator outputs.

Figure 1 presents the iot model with a variety of typical
Things connected to the controller, with matching colours
representing the closed-loop of control between each of the
Things in the network. As discussed below, reliability varies
with respect to the typical operations a device performs, which
is portrayed with the solid and dashed directed lines.

Sensor

Actuator

Reliable RPC

Unreliable Unicast

Legend

Temperature
sensor

Presence
sensor

Central
heating

Lights

Door
sensor

Alarm

Controller

Fig. 1: iot model

Reliability: Typical Things within the iot are low-power
embedded devices, relying on wireless communication which
is inherently unreliable. Thus, it’s necessary to implement
reliability on top in order to ensure correct operation. However,
whilst other approaches have simply chosen to run over TCP,
which provides a fully reliable connection, our design opts
for selective reliability on top of the unreliable packet stream.
This enables the protocol to ensure critical packets are sent
reliably, such as connection handshakes, as well as allow
devices to save power and sleep after a transmission instead of
waiting for an acknowledgement when the data isn’t critical,
such as ephemeral sensor readings. Similarly, this also ensures
commands sent to actuators from the controller are carried out
at-most-once.

Liveness: Ensuring Things within the network are alive and
accessible is another key issue, since wireless interference and
depleted batteries are a real problem, causing the closed-loop
interaction to hang or fail and Things within the network to
waste power sending packets to devices that are no longer “out
there”. To resolve this issue, checks must be performed, using
piggybacked messages where possible, to ensure that no extra
bandwidth is wasted, such as a sensor periodically requesting
a response to a reading. Otherwise standard ping-ack messages
are exchanged.

Integrity: Whilst ensuring reliability of some data is not
essential, it is however extremely important that any received
data be correct. Values corrupted in transit would appear to
the controller as seemingly correct, which could then cause
the controller to issue invalid commands to an actuator. To
ensure integrity of the data, a checksum of the data, provided
by the security protocol, is transmitted with it and compared
on the receiving side, verifying that it hasn’t been altered in
transit.

Protocol data unit: One of the key aims of this protocol
is to ensure low energy consumption, which on an embedded
devices means transmitting as little as possible over the radio,
as radio transmission is the most power-hungry operation for a
node. Therefore, it was imperative that our protocol adds very
little overhead to the already small payload size.

Figure 2 shows the secure protocol data unit layout for the
iot protocol. The MAC field, contains the message authenti-
cation code (MAC), used for authenticating the integrity of
the encrypted fields (shaded grey). Channels are synonymous
to ports found in TCP/UDP and enable devices to hold state
for more than one connection and potentially take on more
than one role. Sequence numbers ensure packet ordering, at-
most-one semantics and protect against possible replay attacks.
The command field designates the type of payload each packet
holds e.g. sensor reading, handshake ack, actuator command
etc. The low order bit of the command field, designated R, is
used to indicate that the packet requires an acknowledgement.

D. Security

In this section we present the design of our security
protocol, enabling new devices to join the network without
the need of a shared secret or any physical interaction with the
controller. As discussed later in section VII, there are many
existing security protocols available for TinyOS, including
TinySec [11] and MiniSec [12] for symmetric cryptography
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Fig. 2: iot Protocol data unit, shading indicates bytes are
encrypted and authenticated using a pairwise symmetric key.

and TinyECC [13] for asymmetric cryptography, as well as a
variety of other key distribution schemes [14]–[20]. The secu-
rity protocol design we propose does not claim to demonstrate
a completely new protocol, but is instead a novel combination
of the previously described work, MiniSec and TinyECC,
based on a conventional security algorithm, Transport Layer
Security (TLS), commonly used in desktop machines today.

The key problem with previous approaches to WSN secu-
rity is key distribution, in which approaches either assume that
a network-specific shared secret, key or ID is pre-installed onto
some or all of the nodes and thus distribution is not an issue, or
the structure of the network is planned and predetermined, with
designated high-power nodes to aid in distribution, see section
VII. However, this is impractical for networks containing
many tens of nodes, entering in a piecemeal fashion and for
administration by a novice user expecting device installation
to be simple. Thus, a secure key distribution method must be
devised to ensure new nodes can join the network without the
need to be reprogrammed.

To solve this problem we propose the security protocol
design described below and in figure 3. Our design attempts
to alleviate complex physical interactions between devices
performed by the user [18] and remove the need to design
and configure the network, which for the average home user
would be non-trivial. Later sections, IV and V, describe the
choices made in designing this protocol.

Prior to deployment, nodes will need to be bootstrapped
with unique public/private key pairs,a public key certificate
and the CA’s public key. In a commercial scenario this would
require cooperation with trusted manufacturers to create these
keys and certificates. After this the protocol is as follows:

1) Initiate discovery mode on the node; node now ac-
cepts and verifies incoming certificate requests.

2) Initiate query on controller; controller sends a broad-
cast query with its public key certificate.

3) The sensor receives the request with the certificate,
verifies its authenticity using the CA public key
and, if successful, it sends a response with its own
certificate.

4) The controller receives the response with the sensor’s
certificate, verifies its authenticity using the CA pub-
lic key and replies with an acknowledgement.

5) The sensor receives the response ack, generates a ran-
dom nonce value (to protect against replay attacks),
then encrypts it with the controller’s public key and
signs it with its own private key before sending it to
the controller.

6) The controller receives the signed and encrypted
nonce. It first verifies the signature; if invalid it
can either request the nonce again or abort the key
exchange and waste no further resources. Otherwise
it then decrypts the nonce value. The controller then
generates a new symmetric key, encrypts it and the
nonce with the sensor’s public key and signs with its
own private key.

7) The sensor receives the signed and encrypted key
and nonce. It first verifies the signature; if invalid
it can either request the key response again or abort
the key exchange. Otherwise it then decrypts the key
and nonce value, verifying that the nonce is equal to
the one it sent earlier, confirming the key response
has not been replayed. Using the symmetric key, the
sensor then initialises the symmetric encryption code
and then sends a handover message, encrypted using
the symmetric key, to the controller to signal it has
received the key and is ready to communicate using
it.

8) The controller then receives the symmetric handover
message, decrypting it to confirm its authenticity,
and replies with an acknowledgement, also encrypted
using the symmetric key. The two devices can now
communicate securely using the symmetric key.

IV. ASYMMETRIC SECURITY

A. TinyECC

To enable secure key distribution, asymmetric cryptography
provided by elliptic curve cryptography (ECC) using TinyECC
[13] is used. Whilst TinyECC demonstrates the feasibility
of using software-based public key cryptography via ECC
on low-power microcontrollers, it is still extremely expensive
in respect to code size (>15KB), RAM utilisation (3KB)
and operational speed, taking up to 5 seconds per operation.
Therefore, it’s necessary to use it as little as possible and
switch over to the far cheaper symmetric key cryptography
to keep the connection secure for the rest of its lifetime, in
which encrypt and decrypt operations take <2ms.

B. Denial of service protection

Because of the significant cost in verifying a certificate, it
would be possible for an attacker to perform a denial of service
attack on a node by sending it fake certificates. To reduce
the severity of this attack, Things in the network will only
accept and process asymmetric packets during a set window
of time after the user presses a button on the device. This also
provides demonstrative identification for the user, enabling the
user to physically control and understand which devices are
communicating, similar to WIFI protected setup (WPS) built
into commodity home routers.

C. Man-in-the-middle protection

However, using TinyECC alone will not ensure authentica-
tion and won’t protect against man-in-the-middle attacks. To



Fig. 3: Security protocol sequence diagram

perform authentication we propose the use of an offline trusted
certificate authority (CA) to create public key certificates for
nodes. These certificates are then installed on the nodes at
compile time along with the node’s private/public key pair
and the CA’s public key. This enables new nodes to have
their public key certificate authenticated by other nodes using
the CA’s public key, before the node’s respective public keys
are used to exchange the key. This allows nodes to join
any network without a previously bootstrapped shared secret
symmetric key, unlike other pre-deployment approaches which
would require re-bootstrapping the node with the new shared
secret symmetric key each time the node joined a new network.

After the nodes have verified each other’s authenticity, they
are then able to exchange the symmetric key in secret using
asymmetric encryption and decryption, followed by handing
the connection over to use just symmetric cryptography.

D. Optimisations

To enable ECC to operate within reasonable time bounds
on microcontroller platforms, such as the TelosB mote, various
optimisations were made in TinyECC, which uses precom-
puted tables and values created at initialisation to speed up
the cryptographic operations. When using TinyECC to perform
encryption and authentication, the state computed by these
operations overlaps, requiring re-initialisation between oper-
ations. To reduce this overhead, we implemented state saving

and switching, requiring initialisation to be performed only
once for each encryption and authentication module, saving
valuable seconds over the entire key exchange. The benefits
are further detailed in the evaluation in section VI.

E. Asymmetric costs

Whilst the overarching aim of our iot protocol is to
minimise transmission and save as much power as possible,
due to the use of asymmetric cryptography for public keys
and certificates in which keys and certificates are 40bytes
and 20bytes, respectively, large packet sizes are unavoidable.
Similarly, whilst TinyECC makes public key computations
feasible on embedded devices, combining them in our pro-
posed protocol to provide both authentication and encryption
over an insecure channel for the key exchange results in a
one-time high cost, taking less than a minute to complete.
However, because it’s only performed once, the high initial
cost is amortised over the lifetime of the node.

V. SYMMETRIC SECURITY

A. Block cipher algorithm and mode of operation

After the handover has occurred, symmetric cryptography
is used to keep the connection secure for the duration of its
lifetime. The symmetric cryptography used is based on the
MiniSec implementation ported from Rogoway et al’s Offset
Code Book mode of operation (OCB) [21] and Law et al’s
Skipjack block cipher algorithm [22] implementations. How-
ever, due to the inadequacy of various parts of the extended
implementation by MiniSec [23], including being written for
TinyOS 1.0, allowing only one encrypted connection per node,
various memory allocation bugs and inefficient initialisation
vector (IV) synchronisation, much of the code was rewritten
to work correctly and more efficiently for TinyOS 2.1.

B. Man-in-the-middle and Masquerading protection

Similar to the asymmetric component of the protocol, to
prevent man-in-the-middle and masquerading attacks, authenti-
cation is necessary, ensuring that a message sent from a Thing
in the network is genuine and hasn’t been tampered with in
transit. To do this a message authentication code (MAC) block
needs to be generated from the encrypted data. Unlike cipher
block chaining (CBC) and CBC message authentication code
(CBC-MAC), which encrypt/decrypt and authenticate the data
independently using two unique keys, we use the offset code
book (OCB) mode of operation for block ciphering, enabling
both encryption/decryption and authentication to be completed
in one pass over the data using just one key, realising a slight
decrease in time [17] and significant saving in space used for
storing the key.

C. Semantic security

In order to ensure semantic security, in which duplicate
packets don’t encrypt to the same ciphertext, a 64-bit mono-
tonically increasing IV is used for each connection. This
would normally require the 64-bits IV to be transmitted to the
receiving node, which is extremely costly when attached to
each packet. However, using the last bits (LB) optimisation
coined in MiniSec, we are able to just transmit the last n



bits of the counter and with some resynchronisation logic on
both ends, withstand packet loss of up to 2n packets before
resynchronisation occurs. In our protocol we chose to send
the last 6 bits of the counter, due to sharing the byte with
another field. In the case of the IV wrapping around, to remain
semantically secure the controller only needs to generate a new
symmetric key and distribute it before the wrap occurs.

When MiniSec was developed, Skipjack was chosen as
the underlying block-cipher due to its efficient implementation
and low memory footprint [22]. However, Skipjack uses a
maximum key length of 80-bits, which as of 2010 NIST
classifies as insecure for long term use [24]. As a temporary
measure, the controller can choose to re-issue a new session
key for each node after an arbitrary period of time.

VI. EVALUATION

To evaluate our proposed protocol we observed several
key attributes related to our initial requirements of an effi-
cient, lightweight protocol that attempts to minimise radio
transmission. The rest of this section will discuss the iot
implementation size for the various roles, followed by the
packet overheads compared to other existing protocols, and
lastly, the key exchange timings with the related optimisations
to ECC.

Things, specifically sensors and actuators, are expected to
run on low-power constrained devices, thus it’s paramount
to ensure an iot protocol not only fits within the constraints
of a typical Thing, but that it also leaves adequate space
for applications to be built on top of it. Table I shows the
implementation size, ROM and static RAM, across the three
roles. In the current implementation the actuator demonstrates
the lowest overhead with only the iot protocol and LED library
linked into the TinyOS compile, leaving approximately 13KB
ROM and 4KB RAM for applications. Given that actuators and
sensors are only expected to compute very little, this should
provide significant space for applications, except, perhaps, in
the case when local filtering is necessary; this is demonstrated
by the sensor role which shows a significant increase in the
ROM size due to the inclusion of the temperature libraries
for TinyOS; however, it is still well within the constraints of
the environment. Lastly, the controller role demonstrates the
largest size, due to the extra processing and state involved
in managing the network. Unlike the sensor and actuator, the
controller is not definitively bound by the same constraints,
and is expected to run on a more powerful device. Whilst old,
the TelosB mote still represents a middle ground for embedded
devices in terms of ROM and RAM, compared to the popular
Arduino platform sporting only 32KB ROM and 1-4KB RAM.
However, recent MSP430 and ARM microprocessors have
significantly increased amounts of storage available, up to
512KB ROM and 64KB RAM.1

The most important requirement of our protocol is to min-
imise radio transmission; in order to ensure this we not only try
to decrease the number of packets sent but also the size of the
packets. In table 2 we compare our packet header overheads
against the popular and one of the most significant IoT pro-
tocols, 6LowPan combined with the security extension, AES-

1FreeScale ARM - http://www.freescale.com/webapp/sps/site/taxonomy.
jsp?code=KINETIS L SERIES

CCM. For traditional 802.15.4 radio, the maximum advised
packet size is 128-bytes. 6LowPan, a minified IPv6 protocol,
compresses its normally 128-bit addresses to 64- or 16-bit
addresses in order to reduce its overhead. Within a smaller
number of bytes compared to an un-encrypted 6LowPan packet
with 16-bit addresses, our proposed protocol is able to also
ensure that a packet is both secure and authenticated, adding
only 4 bytes of overhead to an un-encrypted packet for the
MAC. In the current implementation there is still room for
possible improvement, as demonstrated by MiniSec which
discussed removing the group and crc fields from the TinyOS
packet, reducing the overhead by a further 3 bytes. RPC calls
made using symmetric encryption achieve an average round-
trip time of 65ms for a 25 byte packet, including a 1 byte
payload (sensor reading), demonstrating efficient and minimal
use of resources whilst maintaining robust security.

In order to create a user-friendly, dynamic and flexible key
distribution scheme, we opted to use public-key cryptography
with TinyECC. In section IV, we argued that whilst TinyECC
still exhibits a considerable cost in terms of storage, speed and
overhead, the full key exchange only has to be performed once
and is amortised over the lifetime of the node; subsequent key
exchanges could use the existing symmetric-secured channel.
Table III shows the average time for switching between modes
and the overall time for the entire key exchange outlined in
section IV. TinyECC uses precomputed tables and values based
on the public-key to be used for an operation, thus when using
different public-keys multiple times to perform a sequence of
encrypted and authenticated actions, such as in the proposed
iot protocol, these tables need to be recomputed each time in
order for them to be effective; this adds a significant overhead
of around 20 seconds between the communicating nodes. To
reduce this, we added an optimisation to save previously
initialised state, thus removing the need to recompute the state
for a given public-key the next time it is used; this gives us a
fully authenticated and secure key exchange taking just under
a minute to complete, split between the two nodes. Because the
ECC computations are split between the two nodes, porting the
controller role to a more powerful platform would significantly
reduce the exchange time, further minimising the time the
sensor/actuator node needs to power and listen on the radio.

Secure iot Protocol
Controller Sensor Actuator

ROM size 38,178B (80%) 41,016B (85%) 34,988B (73%)
RAM size 7372B (74%) 6,208B (62%) 6,142B (61%)

TABLE I: Secure iot protocol size for Controller, Sensor and
Actuator roles on the TelosB (8Mhz, 48KB ROM, 10KB
RAM)mote.

TinyOS + Secure iot Protocol 6LowPan + AES-CCM
Cleartext header 14B + 6B 25B

Encrypted header 14B + 10B 46B

TABLE II: Comparison of payload overhead for our Secure
iot (Symmetric security payload) vs 6LowPan with 16-bit
addresses + AES-CCM.

VII. RELATED WORK

A. IoT protocols

Given the recent surge of popularity for the Internet of
Things, many developers, manufacturers and standards bodies



TinyECC TinyECC + optimisations
Authentication to Encryption 1.4s 0s
Encryption to Authentication 2.5s 0s

Asymmetric key exchange 80.4s 57.1s

TABLE III: Comparison of the module switch over and overall
asymmetric key exchange durations with normal TinyECC and
TinyECC with the save state optimisations implemented.

have attempted to create a solution for their view of the IoT,
each differing greatly and often being proprietary within their
own ecosystems.

The IETF Core working group have proposed a new stan-
dard, the Constrained Application Protocol (CoAP) [9], which
aims to coerce Things within the IoT to fit into the traditional
RESTful client-server architecture that is commonplace on the
Internet today, removing the need for specialised platforms or
applications to access them. The protocol is built to operate on
unreliable UDP links, providing support for reliable delivery
on top when needed. In an attempt to be power-friendly,
services can subscribe to Things, such as sensors, instead of
polling for updates from these devices, allowing them to save
power and enter sleep modes. Whilst bringing Things into the
client-server architecture eases the adoption of such devices, it
forces them to adopt an architecture that simply isn’t suited for
them considering their low-power constraints, placing restric-
tions on their availability, reliability and resources. Similarly, it
also potentially poses serious security risks if simply plugged-
in to the Internet [1].

Building on top of this, the OpenWSN project at UC
Berkeley proposes a software stack sitting on top of an
802.15.4 enabled device and below CoAP/HTTP, consisting of
6Lowpan, a compressed IPv6 for embedded devices, combined
with RPL, an IPv6 routing protocol for lossy wireless networks
and TCP/UDP transport protocols.

As previously discussed, many manufacturers have inte-
grated power-hungry WIFI chipsets and connect the devices
directly to the Internet or to their Cloud service [6], [7], [25],
without significant consideration for the power and security
issues that result. Whilst these devices gain the power and
connectivity of the cloud, this couples them directly to it, and
increases the chance of failure, due to services going down,
limited Internet connectivity and potentially raises issues re-
garding data ownership and privacy/loss [26]. Additionally, as
a result of this direct Internet and Cloud connectivity, devices
needlessly waste power and are at a greater risk to security
threats [1], [2].

B. WSN Security

There have been several different attempts to efficiently
secure WSNs [11]–[20], however none match the iot require-
ments enumerated in section III-C.

TinySec [11], a symmetric cryptography library for TinyOS
1.0, was an initial effort on TinyOS to address security,
intending to demonstrate that software-based cryptography was
possible on constrained devices with minimal power overhead.
To achieve this, TinySec was designed around WSNs’ extreme
resource constraints, taking advantage of some of these con-
straints, such as the limited networking bandwidth, optimising

the security primitives in order to reduce the security overhead
added to each packet. One such optimisation was the use of
a reduced initialisation vector for the cipher block chaining
mode of operation, which combined several of the existing
header fields and added a 2 byte counter, ensuring the initiali-
sation vectors wouldn’t clash between nodes sending the same
packet. Whilst the IV is significantly smaller than conventional
security protocols, which would reduce time until IV reuse,
TinySec argued that this wasn’t an issue, demonstrating that
using an average send rate of 1 packet per minute, IV reuse
would not occur for 45 days.

MiniSec, another symmetric cryptography library for
TinyOS 1.0 and a successor to TinySec, was created to further
improve the security provided by TinySec, adding replay
prevention and also improving upon the minimal security
overheads which TinySec achieved. To achieve the increase
in security, MiniSec chose to increase the initialisation vector
size from 2 bytes to 8 bytes, however, instead of transmitting
the whole 8 bytes, MiniSec sends only the 3 last bits (LB)
within the pre-existing packet length field, thus incurring no
additional overhead for the IV on top of the normal TinyOS
packet. To ensure the LB optimisation works correctly, both
communicating nodes must maintain state for the counter and
perform counter resynchronisation upon significant packet loss
(>23 packets). This counter state is also used to ensure replay
prevention, requiring all received packets to have a higher IV
than the local state.2

Until recently, asymmetric security, namely RSA, was
deemed infeasible on microcontroller platforms, taking on the
order of tens of seconds to complete public key operations [13].
However, this is no longer the case with the development of
elliptic curve cryptography (ECC), in which not only are public
key operations feasible within several seconds, but key lengths
are reduced whilst still providing the same level of security as
longer keys in more traditional asymmetric algorithms such as
RSA.

There are many other complex key distribution schemes
which require hierarchical networks of devices [16], [20]
and predetermined deployment strategies to enable efficient
key distribution. Rahmun et al present a solution for such a
hierarchical network [20], consisting of a network of heteroge-
neous nodes, in which high-resource nodes store node IDs for
surrounding low-resource nodes and provide authentication for
the key exchange process between low-resource nodes using
ECC. However, this scheme requires expensive high-resource
nodes that need to have the low-resource nodes’ IDs stored
ahead of time, and also need to be tamper resistant to protect
against node capture, further increasing the cost. Another
viable alternative, pairings-based key distribution schemes,
such as TinyPBC [15], provide efficient key pairings (<5s)
but require nodes to know each other’s ID a priori, which can
prove difficult to do with authentication.

Other proposed key distribution schemes such as TinyPK
aim to sacrifice immediate authenticity and security on the
mote by only performing the public key operations on the more

2Whilst the MiniSec paper presented an efficient symmetric cryptography
protocol design, the corresponding implementation provided at [23] does not
appear to function correctly (with various runtime issues) or implement the
IV counter using the LB optimisation described.



powerful server side [14]. In contrast, Message-in-a-bottle [18]
relies entirely on a portable faraday cage like barrier to allow
devices to secretly communicate in the clear. Whilst it achieved
the goal of distributing keys, it sacrifices elegance, usability
and scalability, by having to manually place devices inside a
lead pipe each time a key needs to be issued.

VIII. CONCLUSION

Our proposed model and protocol demonstrates a thought-
ful approach to designing a secure and efficient Intranet
of Things. Compared to other approaches which have used
power-hungry WIFI or heavyweight protocols, our protocol
attempts to minimise radio usage on 802.15.4 platforms, in
an effort to prolong the lifetime of battery-powered Things.
In light of existing and recent M2M/IoT attacks, our protocol
has been secured against a variety of attacks, ensuring the
user’s data, privacy and, most importantly, home is safe from
remote control, monitoring and other malicious activities.
Lastly, our protocol also demonstrates a usable, secure and
scalable method for enabling users to add new devices to
the network, without the need for pre-shared secret keys or
complex configuration, via the use of public key cryptography,
provided by TinyECC. The implementation was developed for
the TelosB mote running TinyOS, and the source code has
been made available online3.

IX. FUTURE WORK

Whilst we have presented a solid foundation for the iot,
in the form of a secure and efficient protocol, there are many
possible extensions/improvements. This includes porting the
controller role to more powerful hardware, such as a PC or
router, porting the sensor and actuator roles to other low-power
platforms, and implementing ad-hoc routing. These extensions
would enable the network to easily scale up to handle hundreds
of devices over large and interference-prone areas. It would
also allow for rich and configurable interactions between
Things by connecting the controller to a suitable platform, such
as the Homework Cache [27], a high-performance complex
event processing engine designed for processing data events
in a closed-loop of control. Lastly, the security against brute-
force attacks needs to be improved by replacing the now out-
dated Skipjack block cipher algorithm with the more secure
AES algorithm [24].
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