
InceOS: The Insense-Specific Operating System

Paul Harvey

April 23, 2010

Abstract

This dissertation details the creation of InceOS, a language-specific operating system used to ani-
mate Insense, a new component-based language for programming networks of computing devices.
A detailed justification for InceOS is made by comparison with other language animation systems,
as well as with the existing animation system, explicitly highlighting the inherent flaws and ineffi-
ciencies present. The new virtual machine underlying InceOS is presented, with which an Insense
application interacts. The design, implementation, and operational considerations of InceOS are
also presented. The efficacy of InceOS is quantified through an in-depth performance analysis and
comparison with the existing animation environment.

i

”Great things are done by a series of small things brought together.”
– Vincent Van Gogh

Acknowledgements

To Professor Joe Sventek, for his consistent help and guidance throughout all stages of this project.

To Professor Alan Dearle, during the design of the interface the OS would provide.

To Dr Jonathan Lewis, for his input during the design stages, and persistent tolerance with questions
as the how the runtime operates, even while on holiday.

To Phillipa, for letting me talk my jargon to her and making me dinner.

To my family, for reminding me of the importance of the button.

ii

Contents

1 Introduction 1

1.1 Statement of Research Problem . 2

1.1.1 Motes . 3

1.1.2 Scheduling . 4

1.1.3 Buffering . 4

1.1.4 Code Footprint . 5

1.1.5 Power Consumption and Throughput . 5

1.2 Solution . 6

1.2.1 Scheduling . 6

1.2.2 Buffering . 6

1.3 Code Footprint . 6

1.4 Power Consumption and Throughput . 7

1.5 Document Outline . 7

2 Literature Survey 9

2.1 Microkernel . 9

2.2 Abstraction Layers . 10

2.3 Embedded OS . 12

2.4 Language Specific Operating Systems and Runtimes 14

2.5 Summary . 16

iii

iv

3 Insense Language Semantics 18

3.1 Fundamental Concepts . 18

3.1.1 Components . 18

3.1.2 Channels . 19

4 Components 22

4.1 Design and Configuration . 22

4.1.1 This Pointer . 22

4.1.2 Component Create . 23

4.1.3 Component Exit . 24

4.1.4 Component Yield . 25

4.1.5 Component Stop . 25

5 Scheduler 27

5.1 Component Control Block . 27

5.1.1 Component States . 29

5.2 Scheduling Algorithm . 30

5.2.1 Sleep Vs Idle . 30

5.2.2 Blocking . 31

5.2.3 Unblocking . 31

5.3 Pre-emption . 31

5.4 Architectural Specific Considerations . 32

5.4.1 Context Switching . 32

5.4.2 Stacks . 34

5.4.3 Interrupts and Pre-Emption . 34

5.5 Component Death . 34

v

6 Channels 36

6.1 A Channel . 36

6.2 Configuration . 38

6.3 System Calls . 38

6.3.1 Channel Create . 39

6.3.2 Channel Destroy . 40

6.3.3 Channel Bind . 40

6.3.4 Channel Unbind . 40

6.3.5 Channel Duplicate . 41

6.3.6 Channel Adopt . 41

6.3.7 Channel Receive . 42

6.3.8 Channel Select . 43

6.3.9 Channel Send . 45

6.3.10 Multicast Send . 46

6.3.11 Channel Errors . 47

7 System Components 48

7.1 Timers . 48

7.1.1 Timer Component . 48

7.1.2 Rtimer Component . 51

7.2 Sensors . 51

7.2.1 Button Sensor . 52

7.2.2 Pre-InceOS System . 52

7.3 Radio . 52

7.3.1 Radio Send . 53

7.3.2 Radio Receive . 54

7.3.3 Issues . 54

7.3.4 Pre-InceOS System . 55

vi

7.4 Debug . 55

7.4.1 Print Component . 55

7.4.2 Led Component . 56

7.5 Dynamic Memory . 56

7.6 Name Server . 57

8 Evaluation 58

8.1 Experimental Set-up . 58

8.2 Size . 59

8.2.1 Flash Occupancy . 59

8.2.2 RAM Occupancy . 61

8.3 Timing . 61

8.3.1 System Call Timings . 62

Component Create . 62

Component Exit . 63

Component Stop . 64

Component Yield and Pre-Emption . 65

Channel Create . 66

Channel Destruction . 67

Channel Duplicate . 67

Channel Adopt . 67

Channel Bind and Unbind . 68

Channel Send . 69

Channel Select . 73

8.3.2 Radio . 75

8.3.3 Timer Delay . 76

8.4 Throughput . 77

8.5 Power Consumption . 78

vii

9 Future Work 79

9.1 Improvements and Optimisations . 79

9.2 Future Directions . 80

10 Conclusion 81

A Examples 85

A.1 Insense Language Version . 85

A.2 Compiled C Implementation . 86

B InceOS Virtual Machine Specification 87

Chapter 1

Introduction

In a collaborative project between Glasgow and St Andrews, a new programming language (Insense
[8, 31]) was designed and built to ease the programming of networks of battery-powered computers
that interact via short-range radio communications. Based upon the π-calculus [26], it supports
concurrent programming at the language level, and has been integrated with model checking sys-
tems.

The Insense language is an example of a domain-specific language [24]. A domain specific lan-
guage (DSL) is used to address the specific problems of a single application domain. Examples
of domain specific languages include spreadsheet formulas, SQL, and YACC grammars. Such lan-
guages are to be contrasted with C or Java, which are designed to be general purpose.

A DSL will usually offer more expression in a certain application domain in exchange for less gen-
erality. This has the advantage of reducing, or removing, the amount of domain specific knowledge
that is required by the developer, consequently opening up the domain to more developers. This is
precisely the situation with Insense. For example, the interactions with the radio hardware module,
which can require the developer to understand hardware interactions in embedded programming,
have been abstracted by the language into interactions with a well defined software component.
Furthermore, concurrency is implicit in Insense, requiring no manipulation of threads by the devel-
oper.

Applications that are written in DSLs are animated by an underlying system which can usually
be placed into one of the following three equivalence classes: microkernels, abstraction layers, or
language-specific operating systems (OSs) and runtimes.

Microkernels are small OSs that represent the core aspects of an OS, such as boot loaders and
drivers. From a microkernel, a customised OS can be built to animate the DSL application, as
opposed to creating an entirely new system. This has the advantage of enabling a researcher to
focus on the more “interesting” aspects of OS and language research. See Section 2.1.

Abstraction layers are intermediate layers that require the DSL application to be translated into an
intermediate form that can be executed by a pre-existing platform or further translated to work with
other platforms. This removes the need to create a customised OS or specific runtime. See Section
2.2.

1

2

DSL applications may also be animated by a newly created and customised OS or runtime. Such a
system will entirely address the needs of the DSL and consequently will be more efficient than the
above systems. See Section 2.3.

The implementation of Insense currently requires that a runtime library be supplied to support the
Insense concurrency and communication semantics; this library, in turn, then orchestrates concur-
rency and communication functionality within the Contiki [11] operating system which controls the
sensor node. Between the Insense runtime and Contiki there is substantial duplication, as schedul-
ing is taking place both within the OS and within the library. Additionally, messaging is less than
optimal, with buffering taking place in both the library and the OS. This duplication, besides leading
to less efficient operation, consumes much of the RAM and FLASH in each node, with the result
that it is difficult to construct anything but the most simple applications for use on the nodes.

1.1 Statement of Research Problem

The Insense language is currently compiled into an intermediate form (ANSI C) which then, with
the help of an Insense specific runtime, is animated by the Contiki operating system, as shown in
Figure 1.1. To be precise, the Insense language program is compiled into an application for Contiki.
The Insense program in C is then compiled, together with the runtime and Contiki, into a binary
image; this binary image is then loaded onto the hardware. The combination of the runtime and
Contiki will henceforth be referred to as the pre-InceOS system.

Figure 1.1: Compilation Process for an Insense Program

The fundamental problem faced by having Contiki animate Insense applications is that the Insense
language has a different set of requirements to the services that are being provided by Contiki. For
example, within Insense, communication between components is made explicit by using a channel
mechanism to facilitate message passing. Within Contiki there is no such notion. In order to
provide this service to an Insense application, function calls must be made into the runtime which
then manipulates the features provided by Contiki in order to facilitate the channel mechanism.
As a consequence of this constant use of indirection, performance is degraded. Also, due to the
space occupied by the runtime and superfluous features of Contiki that are not required by Insense,

3

an Insense application’s complexity is constrained both by the lack of available space and reduced
amount of execution time available to it.

The following is an overview of the embedded hardware environment, followed by a breakdown of
the specific problems that occur when Insense applications are animated by the pre-InceOS system.

1.1.1 Motes

Before discussing the main problem addressed by this research, it is useful to have an understanding
of embedded wireless sensor networks; the following discussion is adapted from the Xenocontiki
technical report [19] .

A wireless sensor network is a collection of low cost sensor nodes which interact using radio com-
munications. Typically nodes are able to sense features of the environment around them such as
temperature, humidity, vibration or light and then convey these readings to a central node. This
central node may present its data to a human user in some way, store this data as a record in a
database or respond to this data by affecting a change in the monitored environment.

Each node in the network, also known as a mote, will typically contain a low power CPU (between
2 and 8 MHz) accompanied by a low power radio. The radio’s range varies between ten and a
few hundred meters, and operates at a speed of around 250Kbps to communicate with other nodes.
RAM capacities typically vary from 8KB to 32KB. A node may also come with extra components,
like the sensors mentioned previously, depending on the role it plays within the network; some
may be simply sensor nodes whereas others may be relays, which would not require sensors. An
important component of a node is its power source, usually a battery. Despite a combination of low
power hardware and considerate programming, a node would exhaust its battery after a few days
of continuous use of all components; it is, therefore, commonplace to ensure that a node will enter
a low-power sleep state while there is no work to be done. This technique can extend the life of a
mote battery up to 99%, resulting in a lifetime increase from a few hours to years.

The nodes themselves are often small in size, as seen in Figure 1.2, with the largest volume of space
taken up by the casing for the battery, usually supporting two AA batteries.

4

Figure 1.2: Mote beside an American 25c coin. Intel Research, Berkeley [19]

Although each individual mote has a limited amount of computational capacity, when networked
together in tens or even hundreds, they are capable of quite sophisticated activities.

1.1.2 Scheduling

Currently, the Insense runtime has a scheduler that schedules the different components that make
up the Insense application. Components encapsulate the Insense equivalent of a UNIX process and
a Java object combined (see Chapter 4), and are the schedulable entities in Insense. Components
are compiled into Contiki protothreads (see Section 2.3), which are scheduled by the scheduler
contained within the Contiki OS. As a result, there are two independent schedulers which may
work at cross purposes. This leads to inefficient use of the less-than-ample resources available on
a mote (see Section 1.1.1). There will always be a delay between Insense scheduling a component
and Contiki scheduling a component. This delay will vary, depending on what other tasks Contiki
must perform.

1.1.3 Buffering

Within Insense, components are able to communicate with other components via channels. Chan-
nels are unidirectional; if components A and B wish to both send and receive messages, then two
channels are required: A → B and B → A. Within the pre-InceOS implementation, a single
high-level channel is represented as two low-level half channels, each with an associated message
buffer. In order to send a message from A to B, the message must first be created in a buffer within
component A, then copied into A’s half channel, then copied into B’s half channel, then finally into
a buffer in component B. This situation represents the worst case, however even the best case still
requires three of these buffers. Channels may be composed to provide either 1:N semantics for the
sender, or M:1 semantics for the receiver, as seen in Figure 1.3. These semantics, combined with
half channel buffering, consume a large amount of space at runtime, which limits the size of both
N and M, as well as the available space for other Insense features, such as components.

5

Figure 1.3: Channel Connection Semantics [31]

1.1.4 Code Footprint

As previously discussed, Insense applications are animated by a combination of an Insense runtime
and the Contiki operating system, which takes up more physical space than is desired for resource
constrained motes. Here the runtime acts as pure overhead to accommodate the Insense applications
within Contiki. As an example, the following table shows the space consumption for the t-mote sky
hardware [6], the currently-used hardware platform, with a single, simple hello world application.

Modules Size(bytes)
Contiki 19236
Insense Runtime 7598
Insense App in Contiki 938

This translates to the runtime alone consuming 15.46% of the total flash space (48KB) on the
t-mote. It is worth noting that both the runtime and Contiki use conditional compilation when
including their modules, and this example does not include many features from either the runtime
or Contiki, such as the radio.

1.1.5 Power Consumption and Throughput

Again, due to the amount of duplication present in the current system, more power is being con-
sumed than is required for just an Insense application. For example, with two independent sched-
ulers executing within a single system, power is being wasted in the second scheduler. At present,
the Insense scheduler will decide that a component should execute and sends a tick to the relevant
component. The Insense runtime then informs the Contiki scheduler that the relevant Contiki pro-
tothread is eligible to be executed. This protothread must then wait until control is handed to it to
begin executing.

In the same way that power is being consumed by two schedulers, the same can be said of the
throughput of the system. Instead of processor cycles being spent advancing the Insense applica-
tion, they are being spent in the second scheduler or running some other element required by the
abstraction.

6

1.2 Solution

The main goal of the Insense language is to open up embedded wireless networks to non-specialist
programmers by removing the specialist knowledge that is required to program them. With the
present situation, the pre-InceOS system does enable this, although in a restricted fashion. As a
result of the limitations described above, a developer is again left constrained in a different manner.

Of the issues enumerated above, currently the code footprint is the most pressing. The situation is
such that Insense applications are restricted to being relatively simple, and only so many of them
may exist at one time. It is also the case that this limits the growth of Insense, as the underlying
animation system has no room to grow. The lifetimes of the motes are being restricted due the
duplication present, even if the application is not power hungry. The same argument applies to the
throughput of the system; even though there are few components, they are not able to achieve their
maximum potential.

The chosen solution is the creation of an operating system which has been customised to provide
exactly the functionality that is required by the Insense language: InceOS.

1.2.1 Scheduling

As there would only be one operating system, compared to the current combination of OS and
runtime, there would only be one scheduler. This would remove the current clash between the two
schedulers and enable more processor cycles to be spent advancing the Insense program.

In the current system, some of the OS services are provided by the runtime and others by the runtime
acting as a wrapper around elements of Contiki. In each case, the scheduling of the particular service
is dependant on both schedulers reaching a consensus. With a single OS this issue is removed for
free, even without any inspired implementation.

With both the system and user components being controlled by one single scheduler, not only will
the system throughput improve but so will the system’s responsiveness.

1.2.2 Buffering

As discussed in Chapter 6, data transfers will not require extra buffering, in fact no buffering at all.
Data will be directly moved from component to component without the need for internal buffer-
ing. This makes more space available for other uses, such as more components or more complex
applications.

1.3 Code Footprint

Inherent in the design of a system being created for a single purpose is the saving of space by
comparison with a general purpose system. For InceOS, in particular, this will include the removal
of the superfluous features of Contiki and interactions that the runtime must make with Contiki,

7

instead leaving behind a specifically targeted system, which is solely dedicated to the needs of
Insense. As before, this will reclaim currently used space for the use of Insense applications or
expansion of the services provided to an Insense application.

1.4 Power Consumption and Throughput

The proposed system will remove the extra cycles that are being consumed by the current duplica-
tion, as well as the power they consume. With a scheduler that has better control of the activity in
the system, the removal of the extra buffering, and the removal of the duplication in general, the
end result leaves a system that, even without attention to detail, will makes savings in terms of both
power consumption and throughput.

Also, to improve the throughput of the system, and overcome a limitation of Contiki, the new OS
will be pre-emptive. This is helpful as no locks are required in the system, meaning that components
will not be required to explicitly relinquish control of the processor. This removes the need for such
logic to be present in the C implementation of an Insense application.

The resulting system will have a longer lifetime, offer more execution time to its applications, and in
general make Insense as a language a more attractive and viable option to wireless sensor network
developers, both novice and expert alike.

1.5 Document Outline

The remainder of the document is split in to the following sections:

• Literature Survey: Chapter 2
Review and critique of related works

• Insense: Chapter 3
Overview of the language semantics of Insense

• Component: Chapter 4
Design and implementation of Insense components in InceOS

• Scheduler: Chapter 5
Design and implementation of the InceOS scheduler

• Channel: Chapter 6
Design and implementation of Insense channels in InceOS

• System Components: Chapter 7
Design and implementation of the services offered by InceOS to its applications

• Evaluation: Chapter 8
Comparison of the pre-InceOS animation system for Insense against InceOS

• Future Work: Chapter 9
Future areas for research and extension of InceOS

8

• Conclusion: Chapter 10

• Example Transformation: Appendix A
Example of an application written in Insense and the equivalent representation for InceOS

• InceOS Virtual Machine Specification: Appendix B

Chapter 2

Literature Survey

The related work can be clustered into the following equivalence classes.

2.1 Microkernel

One approach to writing a new operating system, for a new language or any other purpose, is to
use a pre-existing system to provide the core elements of an operating system. This includes boot
loader code, drivers and kernel dynamic memory allocation. These elements can be considered to
be the lowest common denominators in OS development and are often borrowed by new systems
from previously existing ones [13], leaving room for exploration into the more “interesting” areas of
OS research, such as scheduling. Borrowing can be done, for example, in the case of a radio driver
because the radio hardware remains the same, thus the instructions needed to drive the hardware
are the same, regardless of the OS in which these instructions are executed.

The OSKit [13] is such a system. The OSKit provides a set of well documented interfaces, boot-
loader, minimal POSIX environment, and library code to help in building a basic operating system.
Unlike the systems in Section 2.2, the OSKit makes no attempt to be portable, instead purpose-
fully exposing the underlying hardware, with the assumption that this will be of use to the user.
For example, OSKit provides functions to directly manipulate segment registers on x86 hardware.
However, it is also possible to build platform-agnostic components on top of this. A useful feature
of OSKit is that if the user’s OS does not provide a custom implementation for some component
in the OS, say the interrupt vector table, then the OSKit will use its default implementation. There
have been a number of systems implemented for languages using the OSKit: the SR language,
Java, and Standard ML [13]. OSKit was designed for desktop and server computers; none of the
publicly-available information1 indicates that it has been ported to embedded systems, in general,
or sensor nodes, in particular.

This does offer a benefit to the research community by removing certain implementation stages
required for OS development in research. However, as with many things, the advantage gained
depends on the goal of the researcher or developer. If exploring general concepts which do not
rely on any performance characteristics, such as generic algorithm or policy development, then this

1http://www.cs.utah.edu/flux/oskit/index.html, accessed 19/03/2010

9

10

system would be quite beneficial. If the work is more focused on performance, the generic modules
would not be sufficient. Particularly for any work related to sensor motes, the generic modules
would not be suitable. As explained in Section 1.1.1, the hardware and power environments are
distinctly different from those offered by an x86 platform, and so any such representation would
not prove useful for more than a basic exploration of concepts for a sensor device.

Another microkernel system is Choices [5]. Choices is an object-oriented operating system that has
been built in such a way that it can be extended, customised or to have parts of itself replaced by
other objects. This is achieved via the objects that are present in the kernel. Abstract interfaces
are central to Choices, and the objects within the core kernel will implement the kernel interfaces.
To replace a kernel object, a new object must simply implement the interface. An interesting no-
tion from this system is that hardware interrupts are handled by treating them as software raise
statements on exception objects. Like the OSKit, Choices enables a developer to customise its op-
eration, although it is primarily focused around the modification of itself, and not to allow itself to
be completely decomposed into a new system, like the OSKit.

In terms of embedded system development, Choices is not suitable, again due to the hardware
environment of a mote. Embedded systems are usually finely tuned to the requirements which are
made of them, unlike Choices which is attempting to be configurable. As for the OSKit, Choices
would be an interesting platform for high level exploration of OS concepts and policies but not for
an actual deployment implementation. Also, while it is true that the object-orientated paradigm is
a powerful one, it may not be the best for embedded systems. As an example, the main purpose
for the development of Insense was to ease the task of development for wireless sensor networks,
and one the ways in which this is done is by using an object, or component, based structure in the
language. However, the implementation of the current system that animates Insense uses a mixture
of the imperative and event driven programming paradigms as they are more suited to the embedded
environment.

In general, the idea of a microkernel has both advantages and disadvantages, depending upon the
intention of the user of the system. If being used as an exploration tool of high level concepts and
policies, then a microkernel provides an opportunity to rapidly develop an OS, although it is still
true that the developer must still construct a system from these components. However, in terms of
performance or development of an actual system, a microkernel is not the best method for achieving
this. It is also the case that for embedded development, previous systems will have been developed
for the targeted platform, consequently enabling a developer to borrow specific elements, such as
device drivers, and reuse them. However, this often depends upon the implementation being open
source and on the associated documentation.

2.2 Abstraction Layers

Another approach to the problem of implementing an operating system for a new language is to
target the language’s compiler at an abstract layer and not at a particular hardware architecture. This
style can be considered as targeting an architecture in its own right, but this virtual architecture has
the advantage that its implementation can be on any hardware, thus enabling the top level language
to be portable even though it is only targeted at one architecture. It is also the case with this
approach that different languages are able to be executed and work together because of the shared
middle ground. By taking this approach the need to implement a new OS is not required, as any

11

system that implements the virtual architecture will suffice. However, this implementation will
more easily accommodate some approaches than others, as will be explained below.

Java has a popular implementation of a virtual machine (VM), the Java Virtual Machine (JVM) [25].
The Java language is compiled into a series of instructions that resemble assembler style op-codes,
known as bytecodes, and it is these instructions that are executed by the stack based JVM. The
bytecodes will fit into a byte (8 bits), resulting in 255 possible instructions to the JVM. While the
JVM does provide an abstract machine, it is one that is specifically targeted to the Java language.
For Java, this is a great advantage in terms of efficiency, although for languages other than Java
this presents a number of issues [16]. For example, Java only allows passing parameters by value.
Should any language that requires parameter passing by reference wish to run on the JVM, then it
will be required to box and unbox its reference parameters.

Java presents a concept which fits quite naturally to the envisaged idea of Insense. Mainly, the idea
of a single language which can be distributed across many different platforms. This said the actual
implementation is not quite so aligned. The need to have an intermediate execution layer which
is “on-the-fly” compiling (or JITing) the instructions, explained below, does not fit well with the
hardware constraints of a mote, either in space or computational power.

The idea of an intermediate layer for different language runtime integration is not a new one. In
1989, the Portable Common Runtime [33] (PCR) was implemented at Xerox PARC with the goal
of close-coupled interoperation between different programming languages. One possible scenario
for this system would be the creation of a single database management system which has been
written in different languages. The PCR addresses the issues of language interoperation, such
as garbage collection, thread implementation, symbol binding, and a shared address space, via a
common runtime layer. The runtime operates on top of an existing OS, such as UNIX or Mach, and
solves some of the issues by mapping functionality onto the features provided by the underlying
OS. For example, when being animated by UNIX, the threads that are presented by the runtime
map onto the thread implementation that is present in UNIX. If threads are not available, then
coroutines are used. These are similar to protothreads in Contiki, see Section 2.3. I/O requests are
mapped onto processes in the underlying OS and then carried out as normal. In order to use the
runtime, languages will still require their own runtimes to operate on top of the PCR, and as a result
of this garbage collection has been implemented within the PCR. However, this has the downside
of needing to cope with languages with arbitrary pointers, such as C, consequently only allowing
a conservative garbage collector. Symbol binding is one of the most challenging aspects of the
system. In order to enable the different language applications to interoperate, the symbol tables
from each of the object files from each language must first be parsed and saved within the PCR.
This is to resolve any static links and maintain a master symbol table. The second stage requires
runtime maintenance of the PCR symbol table and resolution of symbolic bindings between the
different languages.

The PCR does not naturally align itself with the goals of Insense. This is mainly due to the fact that
Insense is trying to present a single high level language, not a single language which can interact
with others. Also, the space requirements for such a system may be acceptable for a larger desktop
computer, but would simply be infeasible for a mote. In fact, this system is similar in style to the
pre-InceOS animation system, consequently any problems or issues currently observed would be
replicated with a new system of this type.

Another approach taken to the abstract layer is observed in Microsoft’s .Net Common Language
Runtime (CLR) and Common Intermediate Language (CIL) [18]. Here, a language is again tar-

12

geted at an intermediate language instead of at hardware. The main difference between .Net and
Java is that the CIL was designed with the purpose of being targeted by other languages, whereas
bytecodes were designed for Java. The VM target that is presented by the CIL is much more
complex than Java bytecodes; there is a generic specification of types before reaching the .Net in-
structions. The runtime system is also stack based, however in the general case it is less efficient.
For example, the CIL presents a generic add instruction that must have its operands’ type checked
at runtime which presents runtime overhead, whereas in Java, the intermediate bytecodes have spe-
cific instructions for integer add, floating point add, etc. This is assuming that the .Net instructions
are being interpreted with just-in-time compilation, where they are compiled into native machine
code at runtime. It is also possible to compile the intermediate language directly into machine code
before runtime. These compilation and interpretation strategies are similar in Java.

This hybrid style of Java and the PCR would not present an optimal system for an embedded device.
The general idea of compiling a language to an intermediate form is good, as it leads to a portable
language. Also, the notion that this CIL could then be statically compiled into a native binary
is also beneficial, presenting similar benefits to the Java style. Compilation into the CIL would
be “overkill” due to the fact that only Insense would be using the system, meaning types would be
standardised and the Insense compiler could be used to ensure type checking. However, the runtime
checks that would have to be performed are not desirable, due both the the hardware constraints and
the desire to have a system which will maximise throughput and efficiency.

As an aside, it is also possible to reach the other extreme of language implementation with direct
hardware execution of the intermediate language. Unlike abstraction layers, it is possible to exe-
cute the bytecodes or .Net instructions directly on hardware, as in Jazelle [28]. By extending the
instruction set of an Arm processor, it is possible to achieve direct hardware execution. Conse-
quently, the need for an intermediate runtime is removed along with the overhead in space and time
that it requires. However, this means that the overhead has now been switched to more physical
hardware. It is also the case that the set of intermediate instructions (bytecode or .Net) cannot be
extended, lest the new instructions must be handled in software. In such a situation the advantage
that the hardware offers would start to be undermined. In this situation it would also be possible to
reimplement the hardware, but this would be costly and time consuming, not to mention potentially
making previous hardware obsolete.

In general, the notion of having an abstraction layer between the source language and the target
platform is desirable, primarily due to the decoupling between the compilers and the target platform.
Some of the implementation strategies discussed above are not optimal for an embedded platform,
and the direct hardware implementation can not be extended easily.

2.3 Embedded OS

When writing software for embedded devices, the most important constraints are those presented
by the hardware: the constrained battery, memory, communication, and processing power available.
Operating systems for such devices have a number of common traits. Small code size is required
and is usually achieved by a streamlined coding style, usually written in C or assembler. This
is combined with compilation of only the essential components required by the application; for
example, if the system does not use threads, then the thread modules will not be loaded. For this
purpose, modularisation is also another common feature of such systems. In order to preserve

13

power, these systems will usually have one or more sleep mode, that force the mote into a low
power state when a normal desktop machine would simply run the idle thread. Considering the
remote deployment of some sensor networks, the ability to dynamically reprogram the motes during
runtime is often included. The concurrency models used in such systems vary, with some using an
event-based methodology and others using some form of threaded implementation.

Contiki [11] is a light-weight embedded operating system, and exhibits all of the above features.
The organisation of the source tree is very modular, which aids in the optional compilation tech-
niques discussed above, as the platform-independent sections are explicitly split from the platform-
dependent sections. This makes porting from a software build point of view straightforward. Con-
tiki by default uses an event-based model. Due to hardware constraints presented by the motes,
events make many things straightforward. For example, heavyweight threads require their own
stack, which could lead to the mote running out of memory for deep function call trees or even
multiple threads. Also, this means that there is no need for locking mechanisms in Contiki, as two
event handlers cannot run at once. However, due to this state machine model, it can be difficult to
express programs. Furthermore, the style of programming can present a significant learning curve
to programmers; for example, the need to explicitly yield a user protothread. A protothread is an
event-based representation of a thread. Contiki also supports a pre-emptive multithreaded linkable
library. Protothreads are scheduled via a combination of event posting to the protothreads and the
scheduler “calling back” to the protothread, and in this case each thread must be explicitly yielded.
Protothreads do not posses their own stack, instead a single stack is shared between all protothreads.
As a consequence, the local state of a function will not persist after a protothread is unscheduled.

As Contiki is used in the pre-InceOS system, a more detailed analysis of which can be found
progressively throughout the rest of this document.

TinyOs [20, 15] is another embedded operating system which is event-based. It differs from Contiki
most notably in the sense that it is written in a C dialect, known as nesC [15]. TinyOs has a more
explicit interaction with the hardware via an abstraction layer, know as the hardware protection
layer. This layer serves as the barrier between the platform independent and hardware specific
sections of the OS. In general the layout of TinyOs’s directory structure is more complex than that
of Contiki, thus making the learning curve somewhat steep for a new developer. This said, [20] does
note the extremely short execution times for essential OS operations, such as context switching and
memory operations. TinyOs also supports “over-the-air” reprogramming via the Deluge extension2.
Scheduling is achieved via event posting to the scheduler, and once the scheduler routine is invoked
the relevant task (locus of control) is executed.

TinyOs is a well used and proven embedded OS. Ease of development aside, it present a similar
situation as Contiki in that the semantics which it offers to its applications are not the same as those
required by Insense programs; in point of fact, they are less suitable than those presented by Contiki.
The event driven style does not fit well with the Insense semantics, as Insense itself uses a quasi
event system: the blocking rendezvous model, Section 3.1.2. Consequently, the new system should
facilitate the events used by Insense, not simply include these events into those events present in an
existing system.

Descartes [23] is a runtime system specifically designed for embedded networks that supports Dy-
namic C, a language similar to the SR language supported by the SR Portable Runtime System
discussed in Section 2.4. The goal of this system is to give Dynamic C programs the ability to

2http://www.tinyos.net/scoop/section/Releases, Accessed 25/11/2009

14

perform remote procedure calls, run on embedded platforms, and to enable Dynamic C programs
to use message passing as well as have quasi-dynamic creation of processes. Descartes also aims
to give programs the ability to perform interprocess communication (IPC) between motes. In this
parlance, a process refers to a thread of control that must be explicitly yielded. The coding style
used is similar to that of Contiki, in that IPC is achieved through messages (events) and threads
must be explicitly yielded. Remote Procedure calls are also possible, by representing the remote
call instance as a process. Memory is partitioned into two logical categories: xmem and rootmem.
Both of these are allocated from the heap, the difference being that rootmem is statically allocated,
which requires programmer intervention during development to determine the number of differ-
ent data structures required in the program, and xmem is dynamically allocatable. Descartes also
allows messages to either be in ASCII format or binary format. ASCII is usually used for debug-
ging purposes, and binary for deployment. In general, Descartes applications are not as efficient as
Dynamic C programs, in terms of both speed and memory use [23]. However, the advantage is a
resulting system that is less complicated and easier to debug. As this is an event-based model in all
but name, it will suffer from the same issues discussed for Contiki, particularly in terms of the way
in which processes are used, which are essentially just protothreads.

The core requirements of embedded systems, such as their small sizes and efficient implementa-
tions, are not only desirable for embedded development, but essential. All of the above systems
use the event-based model to drive their systems, and this is one of the primary issues of having In-
sense animated by Contiki. Specifically, Insense is itself generating some explicit events, messages,
but only during communication between components. The use of events in the underlying system
makes it difficult to correctly capture the required semantics, and possibly introduces duplication in
the events that are required.

2.4 Language Specific Operating Systems and Runtimes

In the following systems there are a number of similarities, although each system has its own style
and features to support the language with which it is associated. All of the following languages are
similar to Insense in that they are component-based with message passing. Components represent
the primary language construct, and can be thought of as a cross between a Java object and a Unix
process. In order for components to communicate, channels are used. Messages are passed along
these channels, where these messages can take the form of primitive types (integers, characters) or
more high level constructs (channels, components, records). Components usually represent a single
thread of execution without any shared state, and as a result locking mechanisms are usually not
required in the language. This eliminates the explicit blocking of components that is associated with
locking, however the locking then becomes implicit by requiring a component to block in certain
situations, Section 3.1.2.

An (unnamed) runtime [4] has been written by Luc Bläser in Oberon, to animate the Component
Language [3]. As well as creating a runtime to animate the language, another goal was to create
a system that was optimised towards a newer parallel programming model as opposed to the ex-
isting sequential model. Due to the constrained nature of the class of programming language that
the system is intended to support, it is possible to support millions of parallel processes and have
fast and predictable program execution speeds. This speed-up comes from the fact that components
have small dynamic stacks that can be context-switched by saving and restoring only three registers.
Switching can either be pre-emptive, due to a time-out, or explicit, by yielding. Scheduling in this

15

system is implemented as a simple FIFO scheduler, and all program structures are allocated on the
heap. The compiler supports dynamic memory allocation by providing information on structure
sizes that have been gathered from static analysis during compile time. Within the Component Lan-
guage, components are able to be shared resources and require locking mechanisms (semaphores).
Communication is achieved by message passing along channels. The two parties involved in com-
munication take on the roles of client (sender) and server (receiver). Message passing cannot be
performed in an arbitrary way, and must adhere to a protocol that has been specified in EBNF. For
comparison, in Insense this is handled by typed channels.

This (unnamed) runtime provides a solid model that could be adapted for an embedded system.
The small stack size and simple context switch, along with the associated performance, would be
very advantageous on a mote. However, the EBNF specifications would need to be simplified to
typed channels which could become a compiler issue, rather than a runtime issue, and the restriction
added that components cannot be shared.

The Active Oberon System [27] is an OS that is mostly written in Oberon and animates the Active
Oberon language [17]. It is implemented in two halves: the lower level is implemented in Oberon,
and the upper in Active Oberon; the reason for this split is not specified, although it is assumed
so as to provide an easier integration with Active Oberon applications. The goal of this system is
to support active object multitasking. To continue the Java analogy, an active object is the same
as a Java object with methods, state, and the object itself acts as a locking mechanism. However
the main difference is that each active object has an implicitly associated thread that executes the
associated “behaviour” of that object. It is important to note that once such a thread terminates,
the object remains and reverts back to what is conceptually a Java object. The entire system works
within a single address space and relies on the compiler to catch high level language errors, as there
is no explicit error handling in the OS.

The Active Oberon language draws many parallels with Insense. However, the main difference,
shared state, does not mix well. In terms of structure, the notion that a component lives on after
its behaviour stops is not acceptable. More generally, this system is not designed for embedded
systems and as a result has a large code footprint. Insense is not an extension of another language,
even though parallels may be drawn with languages such as those in this section.

Inferno [9] is an operating system that has been designed for creating and supporting distributed
services. Unlike the other systems described in this section, the associated language (Limbo) has
been specifically designed for Inferno as a way to author Inferno applications. Inferno can function
as a standalone operating system or as a user application on many different main stream OS’s. It has
been ported to multiple architectures and can run within 1MB of space. It uses a virtual machine
called Dis to provide the same interface to applications, independent of the platform upon which
they are executing. This virtual machine defines its own byte-codes. As with the languages for the
previous two systems, the Limbo language is arranged into components that communicate typed
data along channels, however pointers are allowed. Beneath the Dis VM is the Inferno kernel. Inside
the kernel is where the scheduling, memory management, interrupt handlers and devices drivers are
located. The Inferno system is a privately owned framework from the Vita Nuova Holdings Ltd
(previously Lucent Technologies), and as such, the implementation details of the lower kernel are
not documented, even though the OS’s source has been released.

Inferno is primarily a distributed OS, which relies on the styx [9] protocol to facilitate the RPC calls
that are used to animate message passing. This particular style of message passing implementation
it not compatible with the Insense view. The runtime requirement of 1MB of RAM is also a difficult

16

requirement to satisfy on many motes.

The Portable Runtime System [2] describes a portable runtime system for the SR language. As the
title suggests, the main goal of this system is to enable the SR language to be portable. To achieve
this, the system uses a component based. Within SR there is a notion of a virtual machine, although
it refers to an isolated address space on a machine. The runtime itself serves as an abstraction layer
over existing systems, and may not function as a standalone system. As SR is a concurrent language,
the main function of the runtime is to provide a threading interface that maps a static interface,
which is presented to the SR language, to an actual thread implementation in the underlying OS;
for example, pthreads in Linux. The runtime achieves this via C macros. As the actual threads are
the property of the underlying OS, it is that OS’s responsibility to schedule them, however to protect
critical regions the runtime presents a macro to the SR language that enables the use of underlying
locks. If pre-emptive scheduling is not used, then these macros are empty. Thread creation is also
hidden behind a macro, and the parameters that are passed resemble those for creating a pthread.
The main difference is that the runtime does not pass the actual function to be run in the thread,
but rather an intermediate function that calls it. This is done in order to guarantee that an arbitrary
number of parameters may be passed to the threaded function, and to bind the thread to a runtime
structure. An interesting point is that this runtime has been ported to an OS (Fluke [14])that has
been implemented with the OSKit, discussed in Section 2.1.

The main advantage that this equivalence class offers, is that each system is targeted directly to
the needs of the language that they animate and, as highlighted below, this is a desirable quality.
However, such systems require a great deal of time and effort as they must be designed and built
from scratch.

2.5 Summary

It can be seen that there is little work that is directly applicable to the creation of a language-specific
operating system for embedded devices. There are examples of OSs for embedded devices, but none
that have been designed with the goal of animating a single language. There have been operating
systems that have been designed for single languages; however these have not been directly targeted
at embedded systems.

This current knowledge gap with respect to language-specific operating systems in general, and for
motes in particular, justifies this work.

InceOS is by definition a language-specific operating system, and fits into the fourth category dis-
cussed above; Section 2.4 details the other members of this class. This class was chosen due to
the goals of the project, specifically the desire to have a system which is as efficient, as small and
as targeted to Insense as possible. The other equivalence classes were simply not able to offer this
level of precision or customisation. Also, it can be seen that the programming models observed in
the fourth equivalence class are component based, using message passing to communicate. Even
though the precise details of these systems are not identical to Insense, there is enough to draw a
parallel. InceOS draws on a feature of another class: mainly the abstraction layers present in Java.
Consequently, the Insense language is targeted at the Insense virtual machine which can be found
in Appendix B. This is not a virtual machine in the same sense as the JVM, but rather a description
of the system call prototypes and data structures that are available to Insense programs, and which
are supported by InceOS. It is also the case that the spirit of the third equivalence class will be

17

incorporated by InceOS, mainly a very small and efficient implementation that offers exactly the
services and semantics that are required to animate Insense programs and no more.

Chapter 3

Insense Language Semantics

The following chapter provides an overview of the Insense language. This is necessary to provide
the rationale behind the design and implementation decisions found within the subsequent chapters,
such as the system calls and intra-OS interaction.

3.1 Fundamental Concepts

The two fundamental concepts in the Insense language are channels and components.

3.1.1 Components

Components represent the fundamental schedulable entities within Insense. A component consists
of zero or more state fields; a single thread of execution known as a behaviour, which may access
the component’s state; one default, plus zero or more user-specified constructor functions that are
used to initialise a component; and also zero of more functions. A component’s behaviour consists
of an infinite loop, within which user-specified code is executed. This code may interact with the
state associated with the component or the functions associated with the component.

A component may be created, self terminate, be terminated by another component, or explicitly
yield control of the processor during execution of its behaviour loop.

Components are similar to Java objects, with reference to the state fields or functions that are asso-
ciated with that object. However, a very important difference is that Insense components execute
in isolation of other components - i.e. there is no shared state. One component may not access an-
other component’s state, or invoke it’s functions. This model of computation draws certain parallels
with the actor model of computation [7]. Components are able to communicate with each other;
however, this must be done through channels.

18

19

3.1.2 Channels

Within Insense, channels are used to represent one half of a binding between components, and en-
able unicast communication. Channels have an associated direction (IN or OUT) which is specified
during a channel’s creation. In order for one component to communicate with another, two channels
will be required: one OUT and one IN. An OUT channel is always associated with a component
that wishes to send data, and an IN channel is associated with a component that wishes to receive
data.

Within Insense, channels are considered to be strongly typed in relation to the types of the data
that they transfer. These types can consist of standard types, such as integer (int) and character
(char), as well as application defined types. Insense also support a generic type known as the any
type. It is possible for any data type to be cast to this any type.

Before any data may be sent between components over a channel, the IN channel of a receiving
component must first be bound to the OUT channel of a sending component. Either type of channel
may be bound to a number of other channels, provided that they are of the opposite polarity and
associated with identical data types. The different connection patterns that channels may form can
be seen in Figure 3.1.

Figure 3.1: Channel Connection Patterns [8]

After a successful binding, a component may execute a receive request on an IN channel or a send
request on an OUT channel. In the case of only one connection, a) in Figure3.1, S1 may only push
data across to R1 if and only if R1 is in a blocked state and therefore ready to accept data, otherwise
S1 will enter a blocked state. In such a case it is up to R1, at some later point, to execute a receive
on channel cin.

Data may be pushed to a receiving component or pulled from a sending component depending on
the conditions listed in Table 3.1.

20

Sender State Receiver State Action
Sending Runnable Sender will block until the Receiver executes a receive on the

channel bound to the Sender’s channel
Sending Blocked Sender will successfully send the data to the Receiver and con-

tinues executing. Receiver subsequently becomes unblocked and
acts on the data

Runnable Receiving Receiver will block until the Sender executes a send on the chan-
nel bound to the Receiver’s channel

Blocked Receiving Receiver will successfully receive the data from the Sender and
continues executing. Sender subsequently becomes unblocked.

Table 3.1: Insense Channel Send and Receive Rules

To highlight the rules, the example discussed above of a single binding is shown in Figure 3.2.
The situation shown is where component B wishes to send some data to component A. Firstly A is
running, (a), and is pre-empted allowing B to begin execution, (b). B then enters a blocked state
while attempting to send to A because A is not currently blocked executing a receive request, (c).
At some later time, A then begins executing and executes a receive request, this makes B eligible
to execute again and transfers the data to A, (d).

(a) (b)

(c) (d)

Figure 3.2: Channel Rendezvous Mechanism

As shown in b) and c) of Figure 3.1, an individual channel may have one or more connections; these
situations are not reflected in the rules of Table 3.1. The language requires that when sending or
receiving data along a channel which is bound to more than one other channel, one channel will be
non-deterministically chosen and acted upon. At this point, the situation reverts back to the single
binding case.

The final action that Insense supports is the ability to chose between a number of channels upon
which to execute a receive: the select statement.

21

� �
s e l e c t {

r e c e i v e x from chan1 when p > 7 : p := x
r e c e i v e y from chan2 when p < 7 : p := y
r e c e i v e z from chan3 : p := z
d e f a u l t : p := 1

}� �
Listing 3.1: Insense Example Select Statement

Listing 3.1 shows an example of a select statement in an Insense program. Associated with each
receive call on a channel is an optional condition. A channel is eligible for consideration in the
select statement if the associated condition evaluates to true; in addition, if the condition is omitted,
the channel is also eligible. If more than one channel is eligible, then a non-deterministic choice
is made among the eligible channels. If no channels are eligible and a default clause has been
specified, than the default action is executed; if no channels are eligible and the default clause has
been omitted, it is an error.

In summary, components may perform the following actions upon channels: create, destroy, bind,
unbind, send data over a bound channel, receive data over a bound channel, and perform a select
over a one or more bound IN channels.

Chapter 4

Components

The following chapter discusses the design and implementation of the component abstraction within
the OS and how it is associated with the component concept in the Insense language.

4.1 Design and Configuration

As stated in Section 3.1.1, the component abstraction must support a number of operations; in order
to meet these requirements, the C language system calls in Listing 4.1 are provided by the OS.

� �
void ∗ c o m p o n e n t c r e a t e (void (∗ c o n s t r u c t o r) () , void (∗ b e h a v i o u r) ()

i n t s t r u c t s i z e , i n t s t a c k s i z e ,
i n t argc , void ∗ a rgv [])

void c o m p o n e n t e x i t (void)
void c o m p o n e n t y i e l d (void)
void c o m p o n e n t s t o p (void ∗ t h i s p t r)� �

Listing 4.1: Component System Calls

The component system calls are used to create a component, destroy the invoking component,
pause a component’s execution, and destroy the component referenced by the this ptr variable,
respectively.

4.1.1 This Pointer

Each component has its own state. In order to access this state within the C language representation
of the Insense application, each component is provided with a this pointer. As explained below, it
is the duty of the OS to allocate the this structure for a component, however it is the duty of the
Insense compiler to define the layout of the this structure for a component. As shown in Listings

22

23

4.2 and 4.3, the user component must cast the value returned by the OS to a pointer to the type of
the structure which the compiler has defined for the component.

Listing 4.3 shows the requirement that the first field of any this pointer structure must be an integer.
This stopped field is used for every component animated by InceOS. Specifically it is used as the
loop condition in the behaviour of each component. This enables the component stop call to
function correctly, as described below.

Before a discussion of the implementation of the system calls, it is worth noting that in order to
produce such a streamlined and targeted system, each of the main elements within InceOS (com-
ponent, channel, scheduler) interact closely with each other, leading to a tightly coupled system.
Consequently, it may be difficult to gain an understanding of the operation of the whole system at
first glance.

4.1.2 Component Create

This is the most involved of the component system calls. As implied, this system call is tasked with
creating a new component, however this is not quite as simple as discussed in Section 3.1.1.

The first point to mention is the struct size argument from component create(), Listing
4.1. In Section 3.1.1 it was established that a component had an implicit associated state which was
analogous to the state within a Java object. Within InceOS, this state is represented by a C struct
associated with each component. This argument specifies to the system call the size that is required
by this structure, in turn the system call will allocate that amount of memory and return it to the
caller as a generic pointer (void*). It is then the duty of the caller to cast this pointer to the type
of the structure, the size of which was specified, as explained in Section 4.1.1.

� �
/∗ Dec lare t h i s component ’ s T h i s P o i n t e r ∗ /
s t r u c t t h i s p t r { i n t s topped , i n t va r1 ; char va r2 ; } ;

/∗ S t o r a g e f o r t h e T h i s P o i n t e r ∗ /
s t r u c t t h i s p t r ∗ t h i s ;

/∗ Cr ea t e component and r e t u r n a r e f e r e n c e t o i t s ’ t h i s p o i n t e r ’ ∗ /
t h i s = (t h i s p t r ∗) c o m p o n e n t c r e a t e (& c o n s t r u c t o r f u n c t i o n ,

&b e h a v i o u r f u n c t i o n ,
/∗ S i z e o f s t r u c t t o be a l l o c a t e d ∗ / s i z e o f (s t r u c t t h i s p t r) ,

STACK SIZE ,
num arguments ,
l i s t a r g u m e n t s) ;

/∗May now use and up da t e i n t e r n a l s t a t e ∗ /
t h i s−>va r1 = 6 ;
t h i s−>va r2 = ’ a ’ ;� �

Listing 4.2: This Pointer Allocation and Usage

24

A component has one default constructor, and may have zero or more user-specified constructors
associated with it and, if specified, it is required that a constructor be invoked during a compo-
nent’s creation. component create achieves this via the constructor function pointer and
argc, argv arguments. During the creation of a component this function will be invoked with
these arguments: constructor(this ptr, argc, argv). Here the arguments argc, and
argv refer to number of arguments and the arguments themselves which are being passed to the
constructor respectively. This is the same paradigm as is used to pass arguments to the main func-
tion of a C language program. The this ptr argument is the this pointer, as discussed above.
As the pointer is allocated by the system call, it is the OS’s responsibility to pass this argument,
however is the responsibility of the constructor to cast this pointer to the appropriate type. In the
Insense language there is always at least one constructor, however this can be an empty constructor
which is nothing more than an empty function. In this situation, the NULL value is passed in place
of a pointer to the constructor function in the create call. This is the responsibility of the Insense
compiler.

This style has two advantages. Firstly, the OS simply needs to pass parameters back to an external
function, thus not requiring any intervention or interaction with elements not within its control.
Secondly, this style still allows many different constructors via one mechanism, although it relies
on the Insense compiler to provide the appropriate constructor for the component as a parameter to
this system call.

The final parameter is stack size which is used to specify the size of the stack that this com-
ponent will require. As mentioned previously in Section 3.1.1, each component has an associated
thread of execution which is known as it’s behaviour, and accordingly each component must have
its own stack. This is required because, unlike Contiki, InceOS offers pre-emption, and as a com-
ponent may be pre-empted at any point in its execution, it must be possible to preserve and restore
the execution context of that component at any point. The value of stack size is determined by
compile-time analysis by the Insense compiler, and contains the largest stack size that is required
to successfully run that component. InceOS will also require a certain amount of extra space to be
allocated on the stack, however this will be discussed in Chapter 5.

The final actions when creating a component are firstly, to initialise the stopped field of the this
structure to enable the behaviour loop to execute at least once. Secondly, the component is added to
the scheduler queue, so that it may be scheduled. Finally, a reference to the this pointer is returned
to the caller.

As in all systems, there must be a first component created and handed to the scheduler to execute
when system initialization is completed. In InceOS it is known as primordial main, and is respon-
sible for the initial creation of application components and binding of their channels. In Appendix
A the bindings present in this system element are generated from the connections which are present
at the end of the Insense program. A similar approach has been taken in the pre-InceOS system.

4.1.3 Component Exit

It must also be possible to destroy a component once it has been created and component exit()
is used to do this. The actual act of destroying a component’s internal representation is delegated to
the scheduler and will be discussed in Chapter 5. It is the responsibility of component exit()
to update the status of the component to ensure that the scheduler will remove all traces of it.

25

It should be noted that unlike the runtime, InceOS will not automatically return any dynamically
allocated state, which was allocated by the application, to the heap. It is the responsibility of the
Insense compiler to generate code that will handle the return of allocated space before calling this
function. This is due to the fact that InceOS does not use a reference counted memory system, see
Section 7.5.

4.1.4 Component Yield

It is the responsibility of component yield() to pause the execution of the currently executing
component and cause it to be rescheduled. Within InceOS, a call to yield leaves the component
eligible to run, and simply requests that the scheduler add it to the end of the appropriate run queue.
Again, the specifics of the implementation are delegated to the scheduler, Chapter 5.

4.1.5 Component Stop

As stated in Section 4.1.1, each this pointer must have an integer variable as it’s first field, and it is
this variable that acts as the condition of the loop within the behaviour of each component, as shown
in Listing 4.3. component stop() enables any component to stop another so long as it has a
reference to the other component’s this pointer. This is achieved within the system call by simply
setting the stopped field within the other component’s this pointer from 0 to 1. As a result, the next
time the component to be stopped tests the condition in the loop, it will fail and the component will
execute the component exit() system call and terminate itself.

� �
void b e h a v i o u r (void ∗ t h i s)
{

MY STRUCT ∗ foo = (MY STRUCT∗) t h i s ;

whi le (! foo−>s t o p p e d)
{

/∗Do work ∗ /
}

/ / P laced by t h e I n s e n s e comp i l e r ,
/ / a b e h a v i o u r must n e v e r r e t u r n
c o m p o n e n t e x i t () ;

}� �
Listing 4.3: Standard Layout of a Component’s Behaviour

As with component exit(), it is the responsibility of the Insense compiler to handle the re-
turn of any dynamically allocated memory by generating the appropriate code before exiting the
component. Within the Insense language, memory allocation is very similar to the style used in
Java. Space is allocated for data via the new keyword, and space is never explicitly returned in the

26

language. Currently this is handled by the pre-InceOS system using a reference counted memory
allocation system.

Chapter 5

Scheduler

The following chapter details the design and implementation of the scheduler within InceOS. It
discusses the component control block which is used to represent a component, the scheduling
algorithm, and interrupt driven pre-emption.

5.1 Component Control Block

Within a general purpose OS, such as Linux, threads represent a schedulable entity to user programs.
A data type, know as a task control block (tcb), is used to represent a thread within the core of the
kernel. Amongst other things, a tcb contains the current state, unique identifier, and priority level
of a thread. These values can be used by the scheduling algorithm to schedule the thread, or by the
system to know if a thread should be reclaimed as it is a zombie thread 1.

Just as in a general purpose OS, InceOS requires a data structure to maintain the representation of
a schedulable entity. This is known as the component control block (CCB), Listing 5.1.

1In pthread parlance, a zombie thread refers to a thread which has been started but not joined.

27

28

� �
t y p e d e f s t r u c t ccb {

unsigned char s t a t u s ; / / component s t a t u s
unsigned char i d e n t ; / / component un iq ue ID
s t r u c t ccb ∗ n e x t ; / / n e x t CCB on run queue
void (∗ b e h a v i o u r) () ; / / components b e h a v i o u r
void ∗ s t a t e ; / / component ’ s t h i s p o i n t e r
Channel b l o c k e d c h a n n e l ; / / c h a n n e l component has b l o c k e d on
Channel chans [SCHED CHANNELS] ; / / component ’ s c h a n n e l s
SELECT DATA ∗ s e l e c t p t r ; / / c h a n n e l s b e i n g s e l e c t e d from

i f d e f TARGET XEN / / Xen s p e c i f i c c o n t e x t i n f o r m a t i o n
unsigned long sp ; / / s t a c k p o i n t e r
unsigned long pc ; / / program c o u n t e r

e l s e / / MSP430 s p e c i f i c c o n t e x t i n f o r m a t i o n
unsigned s h o r t sp ; / / s t a c k p o i n t e r
unsigned s h o r t pc ; / / program c o u n t e r

e n d i f
char s t a c k [1] ; / / t h e component ’ s s t a c k

}CCB;� �
Listing 5.1: Component Control Block

The first field of a CCB is used to indicate the current state of the component. This value will
contain one of the values discussed in Section 5.1.1. The second field, ident, refers to a unique
identifier associated with each CCB. The unsigned char data type used is eight bits on the
msp430 [6], which is the micro-controller found on the t-mote. This gives 256 unique values to
represent components, which is currently sufficient. However, should this change and more values
be required, then by simply using an unsigned integer to store the value, 65536 possible unique
values are generated at the expense of only 1 more byte per CCB on the t-mote. The third field is
used as a pointer to the next CCB, as required for the ready queue discussed below. The fourth field
is used to store the function pointer which was passed to component create(), and is used to
initially represent the behaviour function associated with component. state is a pointer to the this
pointer for the component, and is required both for initially providing the behaviour function with
its this pointer, and when destroying the component, see Section 5.5.

The following three fields are used to facilitate the communications semantics within Insense, a full
description of which can be found in Chapter 6. The first field, blocked channel, is used to
indicate the channel which the current component has blocked on while either trying to execute a
send or receive request. The second, chans, is used to specify the channels which are associated
with the component that this CCB represents. As this is a static array, the number of channel which
may be associated is limited to a predefined value, SCHED CHANNELS. Currently this value is 20,
which was decided after an analysis of the existing Insense applications. This array is initialised
during the creation of a CCB. The final field is a pointer to a SELECT DATA data type. This is used
when a component must block while executing a select request over a number of channels.

The next fields are architecturally specific to the target platform. The values, sp and pc, are used to
hold the stack pointer and program counter respectively. In this case, the two architectures are the
Xen hypervisor [1], and the t-mote sky. When executing a context switch, it is these values which

29

are used to both save (swap out) part of the state of one component and restore (swap in) another.
The final field is used to store the stack which is associated with each component, the size of which
was initially specified to the component create() system call. The stack is allocated from the
heap, together with the CCB, by specifying the size of the CCB structure plus that of the required
stack. The generic pointer which is returned is cast to a CCB structure, leaving the extra space to be
used as the stack. The stack field of the CCB acts as a place holder for the actual stack, and is also
used when allocating the initial value of the stack pointer (sp). Stack allocation is done in this way
to eliminate the possibility of memory fragmentation that may occur from two separate allocations
of the CCB and stack. It is possible that this is a situation where static allocation could be used for
the CCBs, as with the CHANs, and the stacks could be dynamically allocated as required. However,
currently Insense language programs use a relatively small number of components, which are not
often destroyed (stopped), therefore this was not done. Although, this could be achieved by a simple
modification to the implementation.

Contiki also has an equivalent data type know as a process which is used to represent a protothread.
In this case the process would be equivalent to the CCB, and protothread equivalent to the compo-
nent.

5.1.1 Component States

In order to implement the blocking rendezvous model that is required by Insense, a component
may be in one of two fundamental states: running or blocked. This model was too simple when
designing InceOS and as a result there are now eight different states, as enumerated by Listing 5.2.

� �
enum c o m p o n e n t s t a t u s {

RUNNING, / / C u r r e n t l y r u n n i n g
READY, / / Ready t o run
INTERRUPT READY , / / Component was u n b l o c k e d by an i n t e r r u p t
BLOCKED SENDER, / / Component b l o c k e d t r y i n g t o send
BLOCKED RECEIVER , / / Component b l o c k e d t r y i n g t o r e c e i v e
BLOCKED SELECT , / / Component b l o c k e d t r y i n g t o s e l e c t
BLOCKED SENSOR, / / Component b l o c k e d w a i t i n g f o r a s e n s o r
KILLED / / Component s h o u l d be k i l l e d

} ;� �
Listing 5.2: CCB Operational States

The first two states, RUNNING and READY, are used to indicate a component that is currently
executing or is ready to run, respectively. A component is placed in the INTERRUPT READY
state after it has been made eligible to run again by a hardware interrupt. This is used by system
components only, as explained in Chapter 7, as this state is required to explicitly indicate when a
component has been made runnable again by an interrupt. Accordingly, if a component that has
blocked due to a system call returns while in this state, a unique value is returned to indicate this
(-2). Currently it is only system components which use this feature, see Sections 6.3.7 and 7.1.

The BLOCKED states are used to indicate that a component has blocked while trying to perform

30

the indicated action: sending, receiving or selecting on a channel(s). The exception to this is
BLOCKED SENSOR. This is used when a component must block while only waiting for a hard-
ware sensor; currently the only usage of this state is for the button component. This is explained
fully in Section 7.2.1. This was used to save both space and time. Unlike the other blocked states,
this state does not require the transfer of any data, and therefore does not require some of the actions
and assertions that must be made by the OS, such as ensuring the correct buffer size, or ensuring
that no components have blocked waiting on this component when it blocks. Conversely, by simply
blocking directly into the BLOCKED SENSOR state, this process is not required.

The final state is used to indicate that a component is to be terminated, and should be disposed of
in a graceful manner. This state is required as a component needs a third party to dispose of it, see
Section 5.5.

5.2 Scheduling Algorithm

A simple round robin scheduling algorithm is used within InceOS at present, and consists of a single
run queue. Any component which is pre-empted or yields is placed at the end of this queue. The
next eligible thread to run is always situated at the head of this queue. In terms of complexity it is
O(1) for both insertion and removal.

Even though there is only one ready queue, the scheduler still supports two priority levels within
the system: normal and interrupt. Normal refers to the case described above where a component is
placed at the end of the run queue. Interrupt refers to the case where a component that may receive
an interrupt, such the timer or radio components discussed in Chapter 7, is unblocked and placed at
the head of the ready queue. As the next component to be run is always taken from the front of this
queue, components that are placed at the head are given a priority boost.

When invoking the scheduler, the process is as follows. First, save the CCB of the currently running
component at the end of the run queue. Second, get the CCB at the head of the run queue which
will be the next component to run. If the saved currently running CCB and the next CCB to be run
are not the same then execute a context switch, otherwise do not. Finally, process any components
which have exited, see Section 5.5.

This choice for a simple scheduler was originally made to enable development and testing of other
elements of InceOS. The simple scheduler is still present due to the time required to explore the
effect of different policies and their effects on scheduling.

5.2.1 Sleep Vs Idle

In a larger system, such as Linux, whenever there is no work found, the idle thread is run until more
work becomes available.. In an embedded system where the power supply is limited, the mote is
placed into a sleep state when no work is found in order to preserve battery power. Sleep states turn
off different hardware modules within a mote depending on the sleep state used. Within the t-mote
there are four different levels of sleep, or low power mode. that will disable different combinations
of the cpu, hardware clocks and the radio. When no work is found in InceOS, low power mode 3
(LPM3) is used, meaning that all hardware is turned off except the two hardware clocks, and the

31

radio. This enables any outstanding timer requests or incoming radio packets to be delivered, see
Chapter 7. Upon generation of an interrupt from one of these components, all hardware on the
t-mote is reactivated, ready to be used.

5.2.2 Blocking

Usually it is the case that a scheduler will also maintain a queue of elements representing the
blocked components, as well as those which are ready to run; however this is the not the case in
InceOS. As explained in Section 6.1, each channel is by default associated with the component
it has been created by. Within InceOS this binding operates in both ways: a channel maintains a
reference to its component, and a component maintains a reference to its channels. The chans
field in Listing 5.1 is used to maintain this association for a component, with the comp field in
Listing 6.1 used to make the association for a channel.

By maintaining these associations, a component that has blocked will always be referenced by the
channels which it owns. This implementation is correct due to the blocking semantics required
by Insense. When a component blocks on a channel with no bindings, then the Insense language
requires that this component should stay blocked until such time as another channel is bound to that
channel and a data transfer operation is executed.

As will be explained in Chapter 6, it is the responsibility of the channel system calls to unblock a
component when appropriate, and it is this requirement, coupled with the fact that channels main-
tain references to the components to which they are attached, that means a blocking queue is not
required. In the above situation, any action to transfer data across the newly bound channel will
cause the blocked component to become unblocked and re-scheduled.

System components who block on the BLOCKED SENSOR state present a special case. In this
situation it is required that the interrupt service routine for the associated sensor posse a reference
to the component that blocks in such a state. Whenever an interrupt is generated by this sensor, it
is its responsibility to unblock and reschedule this component. A reference to the component to be
unblocked is obtained during the initialisation of the sensor. This close coupling is another reason
why only system components can use this state.

5.2.3 Unblocking

Unblocking a component is a fairly simple process. In the normal situation, unblocking a com-
ponent consists of placing it at the end of the run queue. A special case, which is reserved for
components that are awoken by interrupts, involves placing the component at the head of the run
queue. In each case, scheduling will continue as normal the next time the scheduler is invoked.

5.3 Pre-emption

Within the pre-InceOS system, a component is represented by a protothread [12], see Section 2.3.

32

There are two problems with protothreads. Firstly, they are cooperative, i.e. a protothread will
run until it relinquishes control of the processor; this can happen either by an explicit yield call
or blocking system call. This means that each component in the pre-InceOS system will not be
guaranteed a fair share of the processor, and that the progress of the different components will not
be balanced. Secondly, a protothread works by repetitively calling the function which represents
the thread. A protothread does not possess its own stack, instead all protothreads share a single
stack. This does have the advantage of reducing the size requirements of a protothread, however
this means that no local state persists after a protothread yields or blocks, as the call frame being
used for the protothread is removed from the single stack.

In relation to Insense, these issues cause several problems. The first point requires that the Insense
compiler insert an explicit yield at the end of every behaviour loop in order to prevent a component
from monopolising the processor, even though the application may not require it. This prevents any
one particular component making consistent progress, even though progress can still be made. The
second point necessitates the use of statically allocated global variables or dynamically allocated
memory instead of using local variables.

Within InceOS, a pre-emptive multitasking environment is provided. Here a component will re-
linquish control of the processor by an explicit yield call, a blocking system call, or by relying
on a hardware interrupt to pre-empt it after the time quantum has expired2. The option to yield
refers to the component yield() system call, Section 4.1.4, and the blocking option refers to
the blocking operations discussed above, and used in the system calls described in Sections 6.3.9,
6.3.7, 6.3.8.

Pre-emption is achieved via one of the t-mote’s two timer interrupts, specifically timerA, the one
second timer. The timer itself actually generates an interrupt thirty two times a second, resulting in a
minimum time quantum of approximately thirty milliseconds. When timerA generates an interrupt,
the associated interrupt handler routine is invoked. The handler will then invoke the scheduler
routine, which in turn will cause a context switch depending on the scheduling algorithm.

By comparison with protothreads, each component having its own stack enables local state to be
saved and restored across a context switch, as well as removing the need for unnecessary yield
statements to be inserted into the behaviours of components by the Insense compiler.

5.4 Architectural Specific Considerations

The implementation of InceOS is such that it is independent of the hardware platform upon which
it is operating; however, as is often the case, there are a number of exceptions.

5.4.1 Context Switching

The act of switching between different components is inherently specific to the architecture which is
being used. On the t-mote sky, a context switch is quite simple by comparison with an architecture
such as the x86.

2A time quantum refers to the maximum continuous amount of time a component may execute for before being
pre-empted

33

First, all of the sixteen registers on the msp430 micro-controller, which is used on the t-mote, are
pushed onto the stack. Then the values inside the stack pointer and program counter, registers 1 and
0, are saved into the pc and sp fields of the CCB for the currently running component. Then the
stack pointer for the new component to run is copied from the sp field in its CCB into register 1
and the pc value is pushed onto the stack. A RET instruction is then used, which will place the first
value on the stack (program counter) into the program counter register and continue execution from
that point. Unlike other architectures, such as the x86, there is only one stack register. On an x86
platform there are two such registers, one of which points to the top of the current call frame and
one which points to the bottom. The component that has just been switched in must now pop all
all the registers which were previously saved on the stack when it was switched out. At this point
the switched in component is now running on its own stack, and after returning from the schedule
system call, plus any function or interrupt that invoked the scheduler, it will resume execution.

When a component is created and first switched in, the pc field in its CCB is set to a wrapper
function that is used to start a new component, thus avoiding any problems with a new component
trying to pop registers from its stack which do not exist. The wrapper function is also used to
re-enable pre-emption when the new component is executing. After some post-implementation
reflection on the presence of essentially two program counters within a CCB, it was decided that
the pc of the behaviour could be placed on the stack during creation. Within the wrapper function
this value could simply be jumped to, with the address of the this pointer placed on the stack. In this
way, the need for two program counters in the CCB would be removed and some of the overhead
of the initial function call to the behaviour would be removed. The option to keep this function call
was considered, as a component exit could be placed after the call, ensuring that a component would
always exit, however it was decided that some system elements did not require this functionality,
and that the compiler would always place a component exit() call after the end of a behaviour
loop.

Having to return through function calls or an interrupt at the end of a context switch is inefficient,
both in space and time. A possible solution would be to store the return address and current stack
pointer of the entity which is invoking the schedule function. These values could then be stored in-
side the CCB fields and used in the context switch, resulting in the switched in component resuming
execution from immediately after the initial invocation of the context switch. The program counter,
which is saved on the stack, could be accessed directly as the OS code is static, meaning that its
position on the stack could be calculated. Also, the stack pointer value could be calculated due to
the static stack depths of the OS code. The only issue with this would be which registers should be
saved, requiring that on entry to the scheduler all registers are saved, regardless of whether or not a
context switch occurs.

However, the degree of this inefficiency is small. Considering that only a system call or interrupt
can cause a context switch, execution would have to return to another location within the OS. This
is due to the conditional nature of the rendezvous mechanism and its implementation. For example,
if a component blocks as there is no-one to send to, it must return after the block so as the number
of bytes sent is returned to the Insense application, see Chapter 6. This would save exactly 6 bytes
of space, scheduler call frame, and 10 CPU cycles (0.4 µs). In the case of pre-emption, the saving
would be greater as the interrupt context would not need to be explicitly removed, saving 20 bytes
and costing 27 cycles (1.08 µs)

Protothreads do not have context switching in the same sense as described due to their stack-less
non-pre-emptive nature. As all protothreads must explicitly block or yield, Contiki needs only to
select the next function pointer to call from its list of protothreads.

34

5.4.2 Stacks

As discussed previously in Section 5.3, pre-emption is made possible by each component having its
own stack. The size of this stack is determined at compile time by the Insense compiler and passed
as a parameter to the component create() system call. However, this value is the amount of
stack space required to run the C implementation of the Insense application; it does not take into
account the stack space required by InceOS, specifically the space required by the system calls,
interrupt handlers and context switching.

In order to accommodate the extra space required, the maximum possible stack depth was deter-
mined. This value was then added to the size of the stack when allocating a CCB for a component.
This is an architecture specific element due to the fact that different architectures may require dif-
ferent stack sizes depending on the size of the types that it uses; for example, the size of an int on
the t-mote sky is sixteen bits, however on the Imote2 [32] it is 32 bits. This is due to the word sizes
of the respective systems being 16 and 32.

Also, during a context switch all of the registers are saved on to the stack. Again different architec-
tures will have varying numbers of registers of different lengths.

5.4.3 Interrupts and Pre-Emption

InceOS is a pre-emptive system, as noted earlier. Consequently, some situations which require
serialised access to sections of code must be protected by use of a lock. It has been explicitly stated
that Insense does not use mutexs or semaphores and that InceOS does not provide them. However,
this lock is not a mutex or semaphore, in fact it is simply a status flag. Whenever a critical section is
entered, all hardware interrupts are disabled, by clearing a bit in the control register of the msp430,
clearing the value in the status flag, and restoring the hardware interrupts, by resetting the bit in the
control register. When leaving a critical section the process is the same, except the status flag is set
to true.

This status flag, known as the pre-emption flag, is tested every time the timerA interrupt handler
is invoked. If the flag is true, the scheduler is invoked, swapping out the current component and
swapping in the next. If the flag is false, the interrupt does not invoke the scheduler, but can still
perform any other functionality required by the timer.

By only disabling pre-emption and not disabling all hardware interrupts for critical sections within
the OS, interrupts such as timer expiration notifications and incoming radio packets can still be
generated and wake the relevant component, but do not pre-empt the currently running component.
This feature is only available to, used by, and required by the OS itself.

5.5 Component Death

When a component is to be destroyed, all memory that has been allocated to it must be returned
to the heap, and any channels which have been associated with the component made eligible for
use again. The memory to be returned includes the memory allocated for the this pointer and the
component’s CCB, which includes its stack. As each component has its own stack, it is not possible

35

to deallocate this stack with a function that is running on that stack, consequently a component can
not destroy itself.

Instead, disposing of a component is split into two sections. Firstly, a component will call
component exit() which will set the component’s state to KILLED, after which the compo-
nent yields itself. At this point, the CCB representing the component would normally be placed
at the end of the run queue, however the CCB’s status is noted as being set to KILLED and the
CCB is placed in a separate suicide queue, also known as limbo. From here scheduling continues
as normal, with either the next CCB taken from the run queue or the node being put to sleep. In
either case, once the next component to be run is selected, the context switch will occur. At this
point control would normally return the behaviour loop of the component, however before this the
suicide queue is serviced, and any CCBs on this queue are disposed of. Specifically, this consists
of freeing the space allocated for the this pointer structure, stack, and CCB itself, as well as calling
channel destroy(), Section 6.3.2, for each channel in the chan array.

Chapter 6

Channels

This chapter discusses the design and implementation of the channel abstraction within the OS and
how it is associated with the channel concept in the Insense language.

6.1 A Channel

Within InceOS a channel has two representations. The first is used to represent a channel as seen
by the compiled Insense application, and the other if for use within the OS.

Insense applications use a channel definition as follows : typedef int Channel;

Whereas, within the OS a channel is represented by a C struct, as shown in Listing 6.1.

� �
t y p e d e f s t r u c t c h a n n e l {

unsigned char d i r u s e ; / / I n d i c a t e s i f a c h a n n e l i s i n use
and i t s d i r e c t i o n

unsigned char num conns ; / / Number o f b i n d i n g s
CCB ∗my component ; / / Owning component
Channel conns [MAX LINKS] ; / / L i s t o f b i n d i n g s t o c h a n n e l s
void ∗message ; / / p o i n t e r t o message b u f f e r
unsigned i n t m e s s a g e l e n ; / / l e n g t h o f message b u f f e r

}CHAN;� �
Listing 6.1: InceOS representation of a Channel

Two separate representations were chosen to ensure that only the OS is be able to manipulate the
underlying channel representation, removing the possibility that the Insense application may, acci-
dentally or otherwise, modify it.

Within the OS an array of CHAN’s is statically allocated, the size of which represents the total
number of channels that the OS can support. The Channel type serves as an index into this array,

36

37

enabling the Insense application to maintain a handle on a channel for use with the system calls
defined below, but without needing a handle on the underlying representation.

Section 3.1.1 describes the different features that are associated with channels, such as direction,
and these are reflected in the fields of CHAN, which are briefly described in Listing 6.1.

As a channel is accessed via the Channel index, it is possible that an incorrect or malicious value
may be used instead of a legal one. It is the job of dir use to indicate whether or not the value
attempting to be indexed is currently in use or not. dir use is used as a bit field with the second
right most bit (00000010) used to indicate if the channel is in use or not with a 1 or 0 respectively.
This field is also required to specify the direction of this channel is a similar manner, in this case
using the right most bit (00000001) . The OUT direction is specified with 0 and IN direction with a
1. The use of C bitfields was considered to store these values as they would only consume 1 bit of
space each, however the C compiler does not give guarantees of the order in which such values are
placed within the struct, which could lead to errors.

The pre-InceOS system creates channels as they are required and does not use (or require) any
field to represent if a channel is in use, as they all are. It does specify the direction of the channel,
however this is a pointer to a string requiring 2 bytes of space. It is worth mentioning at this point
that the pre-InceOS system also specifies the type of data that a channel conveys. This is not done
in InceOS as it was decided during the design phase that this responsibility would be delegated to
the Insense compiler.

The number of channels that any particular channel is bound to is specified by num conns. This is
associated with the array conns which specifies the indices of the channels to which this channel
is bound. This is similar to the situation found in a CCB. Within Insense, each channel is associated
with a component as was explained in Section 5.2.2. Within a CHAN, this association is represented
by a pointer to the associated component: my component.

The pre-InceOS system made excessive use of buffering during data transfers over channels, see
Section 1.1.3. Within InceOS no buffering takes place during data transfer, instead the OS requires
that an Insense application pass a pointer to a buffer that it has allocated, as well as the length of
this buffer. This is similar to the style of communication used in Berkeley Sockets [30]. When
data is transferred, it is copied from one buffer to the other, see Section 6.3.9. It is message and
message len which are used to store the pointer to the buffer and its size respectively within a
CHAN. By facilitating message communication in this way, the need for multiple internal buffering
is removed and replaced by a more intuitive style. It saves on the amount of space required, memory
fragmentation, and the complexity of the actual transfer with regards to the actual location of the
data.

As Listing 6.1 shows, the number of bindings that a channel may have is limited to MAX LINKS.
This decision was again a combination of analysis of example Insense applications, and an attempt
to lower RAM occupancy. Also as before, the following system calls are parametrised to be inde-
pendent of the value of this variable when checking for legality. At present this value is set to 8. As
an aside, it is worth noting that the layout for the CHAN and CCB were chosen such that they would
enable the best compacting of the data types into the smallest possible space.

38

6.2 Configuration

As noted in Section 6.1, a statically allocated array is used to represent the maximum number of
channels that are offered by the system. This is in contrast to the pre-InceOS system implementation
where each new channel associated with a component is dynamically allocated when required and
maintained in a linked list. By using static allocation as opposed to dynamic allocation, memory
fragmentation is significantly reduced. Whenever a channel is created in the pre-InceOS, Contiki
is asked for a pointer to the start of a memory location (from the heap), as big as the channel
being created, to represent the channel. When the time comes to destroy the channel, the memory
it occupies is returned to the memory allocation system within Contiki. During the lifetime of
the channel, the structure of the heap will have changed meaning that there is no guarantee that
the returned memory will align with another free memory location. The result is a fragmented
heap, meaning that when an allocation request is made for n bytes, n bytes may be available but
they are not contiguous, and therefore the request is denied. This is an expected problem with
simple memory allocators, such the one used in Contiki, however the problem is not helped due
to the comparatively small size of a channel. In contrast, by preallocating the maximum number
of channels required, which could be determined by static analysis at compile time, channels will
take up space within the bss section of the compiler output and not fragment memory. This style of
pre allocation is used for other elements of InceOS as expanded upon by the following sections and
chapters. It is also a well known system developer’s “trick of the trade”.

The size of the channel array is governed by the NUM CHANNELS constant. The implementation
of the following system calls are independent of the value that this constant can take. At present
an unsigned 1 byte (8 bit) value is used to hold an index into this array, which limits the total
number of channels to 255, with the 256th value being used to indicate that an entry in a CHAN’s
connections are unused (UNUSED CHAN), explained in Section 6.3.3. This decision was made to
save space, considering the constrained hardware environment of the t-mote, and by examination
of the number of channels being used by Insense applications. However, should the number of
supported channels need to increase, only four changes need be made to the header file of the
channel module. Originally another value was reserved to indicate that a channel had blocked
while attempting to perform a data transfer action on a channel with no connections. However, this
was not required as the Insense language dictates that a component must remain blocked until a data
transfer completes, making blocking on a channel with no connections not a special case, discussed
in Section 6.3.9.

By comparison, the pre-InceOS system uses a linked list associated with every component to store
the channels which are created as required. In terms of access times it is O(n) for searching which
is required every time a channel operation is performed, however it is O(1) for insertion. InceOS
offers O(1) access times when performing a channel access, as the Insense application will provide
an index, however when creating a channel the array must be searched, offering O(n) complexity.

6.3 System Calls

The following section enumerates and describes the system calls that are associated with channels.
Listing 6.2 shows the prototypes for these system calls.

39

� �
Channel c h a n n e l c r e a t e (enum d i r e c t i o n d)
void c h a n n e l d e s t r o y (Channel i d)

i n t c h a n n e l b i n d (Channel id1 , Channel i d 2)
void c h a n n e l u n b i n d (Channel i d)
Channel c h a n n e l d u p l i c a t e (Channel i d)
i n t c h a n n e l a d o p t (Channel i d)
i n t c h a n n e l s e n d (Channel id , void ∗ b u f f e r , i n t l e n)
i n t c h a n n e l r e c e i v e (Channel id , void ∗ b u f f e r , i n t l e n)
i n t c h a n n e l s e l e c t (s t r u c t s e l e c t s t r u c t ∗ s)� �

Listing 6.2: InceOS System Calls for Channels

6.3.1 Channel Create

This system call creates a new channel and has the prototype:
channel create(enum direction d),
where the parameter d indicates the type of the channel to be created: IN or OUT.

As previously stated, an array of CHAN’s is statically allocated, meaning that no actually memory
allocation is required when creating a channel. Instead, the channel create() system call is
tasked with first checking that the creation is a legal action, selecting a CHAN for use as the channel,
and then initialising it.

Ensuring that the creation is legal requires two checks. The first ensures that the component, with
which the channel will be associated, has space to store the index of the channel to be created, see
Section 5.1. The second ensures that there is a free CHAN within the statically allocated array. If
either of these conditions fail, -1 is returned to indicate an error.

If a free CHAN is found then it is initialised. This consists of first setting it to be in use; assigning
it the direction of the parameter d; setting the number of connections to zero; and setting channels
in the conns array to be unused. It is not required to initialise the buffer pointer and length field
as the send, receive, and select semantics prevent a situation where these fields would ever be in an
erroneous state before being used by the respective functions, as discussed later. The final action is
to associate the channel with a component, however this may not always be the component creating
it. A channel may be created within a constructor function, in which case the channel should
be bound to the component which is being created. In order to make this distinction, an internal
function within the kernel, component in create(), is used to determine whether the new
channel should be associated with the current component, or the component being created. This
check is performed before the first legality test mentioned above. Once this is done, the index of
the CHAN is placed into the array of associated channels in the CCB for the appropriate component.
The final step is to return the index of the CHAN to the caller, thus indicating a successful channel
creation.

40

6.3.2 Channel Destroy

This system call destroys a channel and has the prototype:
channel destroy(Channel id),
where the parameter id indicates the index of the CHAN to be destroyed.

By comparison with creating a channel, destruction of a channel is relatively simple. The first task is
to unbind any connections to or from this channel. This is achieved by calling the channel unbind()
system call if there are any bindings, discussed below. The next step is to disassociate the CHAN
from the component and then set it as being unused.

The pre-InceOS system has no explicit mechanism for the destruction of a channel, it instead relies
on deallocating the memory that was initially assigned for the channel when its owning component
is destroyed, as discussed in Section 4.1.3.

6.3.3 Channel Bind

This system call binds together two channels and has the prototype:
channel bind(Channel id1, Channel id2),
where the parameters id1 and id2 indicate the indices of the channels to be bound.

Within InceOS, the act of binding two channels together is a two stage process. The first ensures
that the parameters are legal indices, and that the channels themselves are allowed to form another
binding, i.e. they have not exceed the maximum number of allowed connections for a channel, and
that they are not already bound to each other. If any of these conditions are violated, then -1 is
returned to the caller indicating an error.

If the validation is successful, the next step is to update the conns array of the involved channels
with a reference to the other, as well as incrementing the num conns field. The value 1 is then
returned to indicate success.

When binding two channels in the pre-InceOS system, a pointer to each channel is inserted into a
linked list in the other. This list is used to maintain the channels to which a particular channel is
bound. The system then alerts the protothreads, who are controlling the components which own
the channels, that a binding has been made, by generating an event specified in the runtime. This
is required as the event will cause any component that blocked due to a data transfer to resume its
transfer. This will be expanded on in Section 6.3.9.

6.3.4 Channel Unbind

This system call removes any binding between a channel and its peers, as well as removing any
connection a peer has to this channel. It has the prototype:
channel unbind(Channel id1),
where the parameter id1 indicates the index of the channel to be unbound.

As before, this is a two stage process. First, the index which is passed as a parameter is validated,
and then the unbinding begins. This is carried out in two nested loops. The logic is that for each

41

binding, remove the link that the bound channel has to the current channel, and then mark that space
in the channel’s connection array as unused. Finally, reset the num conns field to zero. It is worth
noting that the act of unbinding a channel simply resets it and is distinct from destroying a channel
completely.

It is worth noting that it is the bind and unbind functions that maintain the connection lists for
channels, enabling the send, receive and select calls, discussed below, to simply use these values
and not modify them. This is why a component may block on a channel with no connections without
considering it a special case.

A similar approach is taken within the pre-InceOS system.

6.3.5 Channel Duplicate

This system call creates a duplicate copy of a channel, and has the prototype:
channel duplicate(Channel id1),
where the parameter id1 indicates the index of the channel to be duplicated.

Unlike the other system calls, channel duplicate() and channel adopt() do not appear
obvious by looking at the Insense language. Insense allows a channel to be sent across a channel,
and once it has been received by a component, the channel may be used as normal. It is also the
case that if a channel was bound to other channels before being sent, then it should still be so bound
after it has been sent. In order to facilitate this requirement, these two system calls were created.

To duplicate a channel, a new one is first created. Then all the fields, as shown in Listing 6.1, are
copied, and the index of the new channel returned to the user ready to be sent across the channel.
There are two exceptions to this. Firstly, the my component field in not set. This is because it
is expected that this channel is being duplicated to be sent across a channel. As a result the adopt
call will handle the binding of a channel to a component. Secondly, the new channel must be bound
to all of the connections of the previous channel. In the event that a binding can not be made the
allocated channel is destroyed, and -1 is returned to indicate an error.

It is worth noting that this style does not currently support channels being sent across the radio, due
to the fact that it is the index of the channel which is sent. The node that receives this index does
not have a copy of the list of channels with which the index is associated. This is also a symptom in
general of the fact that radio communication is still explicit in InceOS. When the radio is abstracted
over, enabling inter-node component level communication, this problem would be solved by the
OS.

6.3.6 Channel Adopt

This system call binds a channel to the calling component, and has the prototype:
channel adopt(Channel id1),
where the parameter id1 indicates the index of the channel to be adopted.

As alluded to previously, this system call is used to associate a duplicated channel with the calling
component. It is expected that this system call will be used when receiving a channel from a data

42

transfer across a channel.

The pre-InceOS system assigns this received channel to one of the fields within its this pointer; it
is the responsibility of the Insense compiler to handle this. As an aside, in order to send a channel
over another channel it must first be cast to an any type, equivalent to a C void*. This is due to
the fact that the pre-InceOS system currently enforces typed channels, and a channel by itself is
not a type in the language. Upon receipt of a channel, a component must project or cast a channel
to return it to being a typed channel, in terms of the type that the channel conveys. This is not a
concern in InceOS as it relies on the compiler to enforce typed channels, all that InceOS requires is
that the buffer that the data is going to is large enough to hold the channel index.

6.3.7 Channel Receive

This system call attempts to receive data from any of its bound channels, or block if no data is
available. It has the prototype:
channel receive(Channel id, void *buffer, int len),
where the parameter id indicates the index of the channel to be received on, buffer is the space
to hold the incoming datum, and len is the length of the buffer.

This system call is more complicated that those previously explained. This is because it does more
than modifications to data types; it, along with the following two calls, is used to implement part of
the communication semantics used by Insense: the blocking rendezvous model, Section 3.1.2.

This is the first, and simplest, of the data transfer operations in InceOS. It is used to receive data
from any of the components that are currently, or will be, sending data on an OUT channel, which
is bound to the IN channel specified by id. The receive call, as with the others, is a blocking call
and will either successfully transfer data from the senders buffer to its own, enter a blocked state,
as shown in Table 3.1, or generate an error.

Within this, and the subsequent system calls, errors can occur from incorrect user-specified values
and buffer sizes. In order to save repetition, these issues are addressed in Section 6.3.11.

The first operation when receiving is to ensure that the channel being received over is legal, in terms
if being in use and being the right polarisation. Once this is complete a reference to the buffer and
its length are stored, this is required in case the component needs to block, explained below. At this
point there are two possibilities.

The first is that the channel has no connections, indicated by the num conns field in the CHAN, and
therefore no one to accept data from. In this case the system call will set the blocked channel
field of the CCB to the channel it is receiving on and then block, placing the receiving component
into the BLOCKED RECEIVER state. When this component is rescheduled it will begin executing
immediately after this point. At this point it must decide what value to return to the user, and this is
dependant on its state. If the component was unblocked by a send request, Section 6.3.9, then the
number of bytes which were received into the buffer will be returned. However, if the component
was unblocked by an interrupt then the value of -2 is returned to indicate this.

The second possibility is that the channel has one or more connections. Each connection is then
checked to ascertain if it is an eligible candidate for data transfer. This is determined by two
factors. First, the component which owns the bound channel must be in the BLOCKED SENDER

43

state. Second, the blocked channel field of this component’s CCB must contain the bound
channel. The reasons for this are noted in Section 6.3.9. Each connection which is eligible is added
to a list of eligible channels.

After each connection has been examined there is still the possibility that no eligible connections
were found, in this case we revert to the first situation. Otherwise a non deterministic choice is made
from the list by using a random number generator. The data is then transferred from the sending
component’s buffer to the receiving component’s buffer, the sending component unblocked, and the
number of bytes received returned to the caller.

6.3.8 Channel Select

This system call attempts to receive data from any of its specified channels, or block if no data is
available. It has the prototype:
channel select(struct select struct *s),
where the parameter s is a pointer to the select data structure.

This system call provides support for the select feature of the Insense language, Section 3.1.2. In or-
der to specify the conditions, channels, and default selection, a data structure called select struct
is used and can be see in Listing 6.3.

� �
s t r u c t s e l e c t s t r u c t
{

i n t nchans ; / / number o f c h a n n e l s
Channel ∗ chans ; / / l i s t o f c h a n n e l s
i n t whensANDdef ; / / b i t m a s k i n d i c a t i n g t h e when

/ / c l a u s e s and d e f a u l t c l a u s e
void ∗ b u f f e r ; / / p t r t o t h e r e c e i v i n g b u f f e r
i n t s i z e ; / / s i z e o f t h e b u f f e r
i n t ∗ l e n ; / / number o f b y t e s t r a n s f e r r e d

} ;� �
Listing 6.3: Channel Select Data Structure

This structure is used instead of passing the variables as parameters, due to an error with compiler
for the msp430 in which parameters were not correctly accessed in the new call frame of the select
function. This is an unresolved issue with the size optimisation level which attempts to reduce
the size of the binary file which it produces. The structure itself is used to indicate the number
of channels to be selected over, as well as the channel indices themselves. A bit mask is used to
indicate which channel guards are true and which are false, with the bit in the nth position from the
right indicating the guard value for the nth channel. The left most bit is used to indicate whether
of not a default clause is specified, meaning that if no eligible channels are found, the system call
should return the number of channels to the caller, thus indicating to the caller to invoke the default
clause. The buffer and size fields are used to hold a reference to the data buffer and its length,
as specified by the component. The final field is used to specify the number of bytes transferred, as
explained below. An example of this particular system call can be seen in Appendix B.

44

Once in the system call, a list of eligible channels is constructed. At this point eligibility is based
on each channel’s associated guard value. If no channel’s are eligible and the default value is false,
-1 is returned to indicate a programming error. Otherwise, if there are no eligible channels and
the default value is true, then the number of channels is returned, as mentioned above. If there are
eligible channels then they must each have all their connections queried to ascertain if data is ready
to be received across them. This is a similar process used in the above system call, although it is
broken into two stages.

The first is used to determine which of the channels being selected over are ready. The second
will non-deterministically choose which of these channels will be used, after which another non-
deterministic choice is made of that channel’s eligible connections, according to the requirements
in the above section. The data is copied from the sender’s buffer into the receiver’s buffer, and the
sending component unblocked. However, unlike the send and receive calls, the select call returns
the position in the chans array, within the select struct, of the channel received over. The
number of bytes transferred are stored in the len field of the select struct. The enables the
caller to know what channel was selected, and how many bytes were transferred.

If no channels are found to be ready to send their data and the default value is false, the component
must block, otherwise it will return the number of channels to be selected over, indicating the
default was chosen. If the component is to block, then it must do so while waiting on up to 20
channels, the maximum number of channels a component may have. Another data structure known
as SELECT DATA is used to enable this, and can be seen in Listing 6.4.

� �
t y p e d e f s t r u c t s e l e c t {

s t r u c t s e l e c t ∗ n e x t ; / / p o i n t e r t o n e x t l i s t member
unsigned char nchans ; / / Num o f Channe ls b e i n g s e l e c t e d over
unsigned char ∗ chans ; / / Array o f s e l e c t c h a n n e l s
unsigned char p u s h i n g c h a n n e l ; / / Channel which pushed t h e da ta
i n t ∗ w r i t t e n b y t e s ; / / Number o f b y t e s w r i t t e n

}SELECT DATA ;� �
Listing 6.4: Blocking Select Data Structure

This data structure is maintained within a linked list, and so the first field is used to point to the
next element of the list. The following two fields are used to note the number of channels that
a component has blocked selecting over, and a list of these channels. The fourth field is used to
indicate the channel that pushed the data, this is required to identify which of the channels being
selected over was chosen. The final field indicates the number of bytes which were written during
the data transfer.

As with the array of CHAN’s, an array of these structures are statically allocated, however as they
do not need to be accessed individually, they are stored in a linked list. Whenever one is required it
is taken from the list, and when it is finished with it is replaced. If more are required than available,
then more are allocated from the heap.

Before entering a blocked state, the system call will first obtain, and populate one of these structures
with the channels where the guard values were true. It will then place a reference to this structure
into the select ptr field of the CCB of the currently running component, as required for the

45

following send system call. After this is complete, the call will block the current component,
entering it into the BLOCKED SELECT state.

Once the component is unblocked, it will return the SELECT DATA structure to the linked list to
be reused. If the component was awoken by a system call, then the position of the selected channel
and the number of bytes transferred are returned to the caller as described above. If the component
was awoken by an interrupt, -2 is returned.

6.3.9 Channel Send

This system call attempts to send data from any of its bound channels, or block if no data is avail-
able. It has the prototype:
channel send(Channel id, void *buffer, int len),
where the parameter id indicates the index of the channel to be sent over, buffer is the space to
hold the outgoing datum, and len is the length of the buffer.

Before attempting to send, the pointer to the data (buffer) and the data’s length (len) are placed into
the message and message len fields of the CHAN. This is done to enable data to be copied
directly from the buffer provided to the send call, into the buffer provided by the receive or select
calls above. This method is used as it does not require the OS to store any duplicate copies of
the data, thus saving space. In particular this overcomes one of the major limitations with the
pre-InceOS system, as discussed in Section 1.1.3

When sending data over a channel there are two possible legal situations: there are no channels
bound to it (no connections), or there are 1 or more bindings (connections).

In the first case, the blocked channel field of the CCB for the sending component is set to
the index of channel being sent over, and the component placed into the BLOCKED SENDER state,
Section 5.1. This will indicate to any subsequent select or receive calls that this component is ready
to send data across the specified blocked channel.

In the case where there is one or more connections, it is required to ascertain which of the con-
nections are eligible to receive data. This is established by the state of the component associated
with the receiving channel, specifically it must either be in the BLOCKED SELECT state, or in the
BLOCKED RECEIVER state.

If a channel is found with a component in the BLOCKED SELECT state, then the SELECT DATA
structure, which is referenced by the select ptr field in the component’s CCB, is queried. If
any of the channels contained in this structure form a connection with the channel being sent over,
then their indices are added to a list of eligible channels.

If a channel is found with a component in the BLOCKED RECEIVER state, and its component’s
blocked channel field is the same as the receiving channel, then the channel is added to the
same list of eligible channels as above. This is due to the fact that there is no preference or weight-
ing between components that have blocked in a receiving state, or in a selecting state. The need
for the receiving (or sending) component to have blocked on a particular channel is required as a
component may have more than one channel; even thought it is in a blocked state, it may have
entered that state due to another channel, as shown in Figure 6.1.

46

In Figure 6.1, X would be the component executing a send, Y would be the channel being examined,
and the error would be caused by Y trying to receive from Z (channel D), not X (channel A). Here
Y would be placed in the BLOCKED RECEIVER state, but not due to X. The blocked channel
field over comes this problem.

Figure 6.1: Component With Multiple Channels

If a component meets these criteria for being eligible, then the index of the channel it is blocked on
is added to a list of eligible connections.

After all connections have been examined, there is the possibility that no eligible connections were
found, and the eligible list is empty. In this case the procedure is the same as if the channel were
not bound to any other channels, as described above.

If eligible connections were found, an index from the eligible list is chosen at random by using
a pseudo-random number generator, thus meeting the non-deterministic requirement for chan-
nel selection from Insense. The data to be sent is then copied to the buffer supplied by the
receiving or selecting component, and the component unblocked. The send call will then re-
turn the number of bytes transferred to the caller. There is an extra requirement for compo-
nents in the BLOCKED SELECT state. The index of the sending channel must be placed in the
pushing channel field of the select structure to indicate which channel pushed the data, as
described in Section 6.3.8.

6.3.10 Multicast Send

This system call attempts to send data from any of its bound channels, but does not block. It has
the prototype:
channel multicast send(Channel id, void *buffer, int len),
where the parameter id indicates the index of the channel to be sent over, buffer is the space to
hold the outgoing datum, and len is the length of the buffer.

47

In some situations, the blocking semantics required by Insense do not fit the needs of system com-
ponents, such as the timer, rtimer or radio, Chapter 7. Consequently, another channel system call
is available, but only to system components, not Insense applications. This function is analogous
to the above send call, the main two differences being that this system call will never block, and
it will send its data to every connection which is ready to receive it. Also, instead of returning the
number of bytes transmitted, it will return the number of successful sends which were completed.
The reasons for this call are discussed in the following chapter.

The runtime does has similar functionality, however it is not an isolated function, rather it is inte-
grated into the implementation.

6.3.11 Channel Errors

Within InceOS, should an error occur for any reason within a system call, then the value -1 is
returned to the caller. For data transfer functions, errors can be generated by a number of situations.
One reason previously mentioned is attempting to perform an action on an illegal channel index. It
is also the case that preforming a send on an IN channel, or performing a receive or select action on
an OUT channel will raise an error.

A more fundamental error is specifying a buffer which is too small, compared to the size of the
buffer on the other side of the channel. For example, if a receive request blocks trying to receive
with a buffer 10 bytes long, then an error is generated if a send request is attempted with a buffer of
9 bytes or less. The same is true if a component, which is executing a receive or select, specifies a
buffer smaller than that of the sender. Again, if this situation occurs, then -1 is returned to the caller.
It is important to note that the component which has blocked is unaffected, and remains in a blocked
state ready to have its data transferred. In this way, the blocked component specifies the size of the
buffer, even if it should have specified a larger buffer to facilitate the Insense program. This is a
situation where the Insense compiler must ensure that it generates code to ensure the correct buffer
sizes, particularly as InceOS delegates the responsibility of typed channels. If user-specified code
within the behaviour of a component attempts to populate a buffer with too much data, then a buffer
overflow will occur. This code is out-with the jurisdiction of the OS, and such a buffer overflow
will have unknown side effects.

Due to the fact that the select call relies on the SELECT DATA structure when blocking, if there
are no structures available to use, the select call will attempt to dynamically allocate a new one. If
there is no memory available to allocate a new structure, then the call will return -1.

Chapter 7

System Components

This chapter discusses the services that the OS provides. These includes the two timers, sensors,
debug, dynamic memory allocation, and the radio. They are different from the system calls de-
scribed in the previous chapters because the system calls are used to facilitate the requirements of
the languages, whereas this chapter details the services which are available to the Insense appli-
cations themselves. In particular, the timer, rtimer, sensor, button and radio components are the
well-known components which an Insense application has knowledge of.

7.1 Timers

The t-mote sky platform offers two timers: a one second timer (timerA) and a more fine grained
millisecond timer (timerB). In order to provide these services to an Insense application, each timer
has an associated component.

7.1.1 Timer Component

The component associated with timerA is simply the timer component.

Requests are made of the timer component by an Insense application which sends a request message
along a channel to the timer component. The layout of this message can be seen in Listing 7.1. The
Insense application must specify the duration of the time interval that it requires, the channel upon
which it will listen for the tick from the timer component, and whether or not this timer request is
periodic. Due to the larger granularity of this timer, compared to timerB, it is used as a general
purpose timer in Insense applications.

When an Insense application specifies a duration for a time interval, it is specified in terms of
multiples of CLOCK SECOND. This is a value available to any Insense application and specifies the
number of clock ticks which timerA makes in a second (32). The multiplicative factor can be less
than one, resulting in a values less than 32. However, as this value is an integer it will use integer
multiplication, accordingly the result will be an integer.

48

49

� �
s t r u c t t i m e r r e q u e s t {

c l o c k t i m e t i n t e r v a l ; / / t h e d u r a t i o n o f t h e t i m e o u t
Channel chan ; / / t h e c h a n n e l t h a t t h e t i c k w i l l be s e n t ove r
unsigned char p e r i o d i c ; / / i f i t s h o u l d be a p e r i o d i c t i c k

} ;� �
Listing 7.1: Timer A Insense Application Request Structure

Within the timer’s behaviour loop, the first action is to listen on its request channel. In order for
an application to make a timer request it must first bind one of its channels to the timer’s request
channel, after which it may send a timer request on that channel to the timer. The timer com-
ponent’s channels, as with all system components, are well known. The timer will then attempt to
store the received request in the outstanding timer queue, which is sorted by the order of earliest
deadline. If this is successful, then the timer will attempt to bind one of its channels to the channel
that was passed along in the timer request. This is required to guarantee that only the com-
ponent who made the request will receive the tick from the timer. If many request channels were
bound to a single timer output channel, then it could not be guaranteed that the correct component
would receive the correct tick at the correct time.

If there is no space for another timer in the list, then the channel passed in the request is bound
to a special error output channel and an error value of zero is sent to the requesting component,
indicating an error. If there was space but the request channel could not be bound to, then the
request is removed from the list and no further action can currently be taken, as the timer has no
link to the requesting component. Within the timer component, the list of outstanding requests
is constrained by the maximum number of channels which may be associated with a component:
SCHED CHANNELS. This is because of the constraint that each component must have a single
connection to the timer, as explained above. This number is further constrained by two as there
must be a dedicated channel used for incoming requests and one for dedicated error reporting.
Should a greater list be required in the future, this component could be considered a special case
and more channels added, however this is not currently required. After the completion of adding a
new request, the timer must then update a static variable which is used to hold the absolute deadline
of the most imminent outstanding timer request. As the timer list is sorted, this value is simply
the deadline of the request at the head of the timer queue. After this, the component will return to
listening on its input channel.

As an aside, in an attempt to save on heap fragmentation and access times, the timer requests
are statically allocated in an array. These elements are then used to populate a linked list of free
requests. When a timer is used to hold a request, it is added to another linked list of used timers.
It should be noted that these timer requests are different from those that are sent from an Insense
Application, see Listing 7.2. This different structure is required for periodic requests, where both
the deadline and interval must be stored.

50

� �
t y p e d e f s t r u c t t i m e r e n t r y
{

s t r u c t t i m e r e n t r y ∗ n e x t ; / / Nex t e l e m e n t i n l i s t
c l o c k t i m e t d e a d l i n e ; / / D e a d l i n e f o r t h i s t i m e r
c l o c k t i m e t i n t e r v a l ; / / I n t e r v a l f o r t h i s t i m e r
char p e r i o d i c ; / / Timer ’ s p e r i o d i c f l a g
Channel my chan ; / / Channel t o send t i c k on when due

}TIMER ENTRY ;� �
Listing 7.2: Timer Internal Bookkeeping Structure

As explained in Sections 6.3.7, should a component be unblocked by a hardware interrupt it will
return -2 instead of the number of bytes which have been written to it. It is by this method that the
timer component is able to differentiate between an incoming request and a timer’s expiration. If
the value is -2, indicating an expired timer, the timer component will first record the time. It will
then compare this value to the first element of the timer queue. If the deadline of the first timer is
less than or equal to that of the current time, then a tick is sent along the singly bound channel to
which the requesting component should be listening. This channel is then unbound, and the timer
request is removed from the list. If the request was a periodic one, the channel is not unbound and
a new deadline is calculated, as well as adding the timer request back into the outstanding timer
queue. This procedure will be repeated along the timer queue until it is empty or a timer is not due.
In the latter case the static variable is updated with the due time of the next timer.

It is important to note that a special send system call is used when notifying the requesting compo-
nent of either a tick or error known as channel multicast send(), Section 6.3.10. This is
required as it is not acceptable for a system component to block waiting to send; this would prevent
requests from other components being serviced. In the eventuality that zero successful data trans-
fers are made, indicated by the channel multicast send() returning zero, the timer entry’s
channel will be unbound from the receiving components channel and replaced in the free list. This
is done to allow for the eventuality that a component has been destroyed before being able to re-
ceive the timer tick. However, this does leave open the situation where a component starts waiting
for a tick after this happens, in which case it will indefinitely block. At present, this has not yet
happened, however it could be prevented by ensuring a component will not be pre-empted between
requesting the interrupt and listening for it.

In order to cause an interrupt to unblock the timer component, code was placed in the interrupt
service routine for timer A, just as for pre-emption. Whenever a timer interrupt occurs, two checks
are performed to decide whether or not the timer component should be unblocked. The first check
is to ensure that there is a timer request present on the timer queue. As the queue is a linked list, this
check will simply ensure that the head is not NULL. The second check will query the static variable
which holds the outstanding deadline to decide if it is less than the current time. If both of these
conditions are true then the timer component is placed at the head of the schedulers run queue, as
discussed in Section 5.2.3.

51

7.1.2 Rtimer Component

The component associated with timerB is simply the rtimer component.

This timer is used more for high precision timing, for example specifying the sleep periods of the
radio component.

The logic involved for the rtimer is substantially similar to that of the timer component, and so to
avoid duplication it will be omitted. However, there are a few differences to note. Firstly, the rtimer
does not support periodic timer requests, as reflected in the different request structure used, Listing
7.3. Consequently, the internal representation only requires the deadline and not the interval, unlike
the timer component. This is due to the way in which this timer is used as a one shot timer, not a
periodic one.

� �
s t r u c t r t i m e r r e q u e s t {

r t i m e r c l o c k t i n t e r v a l ; / / t h e d u r a t i o n o f t h e t i m e o u t
Channel chan ; / / t h e c h a n n e l t h a t t h e t i c k w i l l be s e n t ove r

} ;� �
Listing 7.3: Rtimer Insense Application Request Structure

Secondly, when an Insense application is specifying a duration for the time out, it is specified in
terms of multiples of RTIMER SECOND. This is a value available to any Insense application, and
specifies the number of clock ticks which timerB makes a second (4096). Thirdly, due to the more
responsive nature of timerB, the maximum size of the timer queue is just five timers. This value
may be changed by updating one variable, however at present there has been no need to increase
this value. The same situation applies as for the above timerA in relation to multiplication of
RTIMER SECOND.

The pre-InceOS system only offers the one second timer to Insense applications via a function call,
not over channel requests. This call is for a periodic timer request. There is a similar style structure
to InceOS used, with a list of timer requests which is added to by new requests, and processed after
a timer interrupt. This function interacts with the existing timer system in Contiki, and is notified
of timer events via an event.

7.2 Sensors

Section 1.1.1 explained that a popular use for motes is for environmental monitoring, which is
achieved via the sensors on a mote. On the t-mote in particular there are eight: a visible light
sensor, a total solar radiation sensor, a temperature sensor, a humidity sensor, a radio sensor, an
internal voltage sensor, an internal temperature sensor and a button sensor.

The first seven sensor requests are serviced by a single component. This component has two chan-
nels for each sensor, one for receiving requests and one for sending results. In order to gain access
to the appropriate channel for the desired sensor, a well known function is queried and passed the

52

identifier for the sensor, which in turn will return the channel that the request should be sent along.
The identifier for a sensor is a well known alias for the sensor, for example to request the internal
temperature, the INTERNAL TEMP SENSOR value would be sent. There is an analogous function
to determine the output channel for that sensor which takes the same aliases.

Upon receipt of a request, the sensor component will use the sent alias inside a switch statement.
It will then read the memory mapped location which contains the desired result and send this value
over the result channel. Again, the channel multicast send() function is used in case the
application has not bound to the output channel for the requested sensor. After sending, the sensor
component will again listen for incoming requests.

7.2.1 Button Sensor

Unlike the sensor component, interaction with the button on the t-mote sky is an asynchronous
event generated by hardware, and requires its own component. In the sensor component a request
is made by another component and a reply sent to it, whereas the button component can only be
waited on by applications. The component makes use of the the BLOCKED SENSOR state, and
is currently the only one to do so. Normally, a component may only block due to a system call
and this blocking is achieved by instructing the scheduler to place it in one of the blocked states
described in Section 5.1.1. As this is a system specific component it is able to interact with the
scheduler directly and be placed into the BLOCKED SENSOR state. In order to wake this compo-
nent, whenever the button is pressed the interrupt handler which is associated with a button press,
will place the button component at the head of the ready queue. When the button is scheduled
again it will send a strobe along its output channel, and return to its blocked state. As before, this
output channel is a well known channel which an Insense application must first bind to and listen
on. Also as before, when the button component attempts to send along the output channel it uses
the channel multicast send() for the reasons previously discussed.

7.2.2 Pre-InceOS System

The pre-InceOS system uses a similar method to provide access to sensors, however there is an extra
level of abstraction within the component itself when accessing the sensor data. From examination
of the implementation, this would seem to be an artefact from when a component was able to
directly access the sensor data, however it is still present. The sensor component still suffers from
the normal overhead which is associated with using a protothread.

7.3 Radio

In order to enable different motes to communicate, a radio is used. The radio on the t-mote sky is
the cc2420 [6].

To enable an Insense application to use the radio two different components are used within InceOS:
the protocol and xmac components, both of which can been seen in Figure 7.1.

53

Figure 7.1: InceOS Radio Interactions

7.3.1 Radio Send

The protocol component acts as a protocol stack enabling the Insense application to send a message
over the radio using one of the available protocols in the protocol component. In a similar style to
the sensors, an application will select the service (protocol) it wishes to use by binding to a channel
that represents that service. An application can receive a message by binding a channel to the
output channel of a particular protocol. At present only a simple unicast and a broadcast protocol is
supported due to time constraints, consequently this design is a proposal for the way in which other
implementations of protocols would be included in InceOS.

In order to send data over the radio, the application must first construct a radio request packet,
Listing 7.4.� �
t y p e d e f s t r u c t r a d i o p a c k e t {

unsigned char add r [2] ; / / i f s e n d i n g = d e s t , i f r e c e i v i n g = s r c
char p a y l o a d [MAX PAYLOAD] ;
unsigned char p a y l o a d s i z e ;

}RADIO PACKET ;� �
Listing 7.4: Radio Request Data Structure

The addr field is either the address of the recipient of the packet, when the application is sending
data, or the address of the sender, when the application is receiving data from the radio. The address
{0,0} is reserved and used as the broadcast address when the application wants to send the data to
all reachable nodes in the network, otherwise the address of a specific node may be used. Currently
an application can only obtain an address by first explicitly broadcasting a packet and examining the
address contained in the RADIO PACKET when a reply is received. See Chapter 9 for the proposed
extensions to this method. The payload field is used to store the data to be sent or which is being

54

received. Due to hardware constraints, the maximum packet that can be sent is 127 bytes, and
this is further constrained by the size of the mac layer header (5 bytes) which must be prepended
to each packet. Accordingly, the maximum payload supported is 122 bytes which is the value of
MAX PAYLOAD. The payload size is used to indicate the number of bytes being sent, in a similar
way to the len parameter in the channel send() function.

Once the radio component has received a request to send a message, it then has the opportunity
to first perform any action that is required by the protocol, via which the message is to be sent.
Currently no action is taken. The radio component will then send the data to the xmac component.

It is the role of the xmac component to then construct a packet which will be placed into the radio’s
hardware buffer, ready to be sent over the radio. In order to do this a small header is prepended
to the data. This header contains the source address of the current node, the destination address
which is inside the request from the application, and the type of the packet being sent, either data,
strobe, or ack. The data from the request is then copied into the packet and sent over the radio using
the xmac protocol. The software from this point to the hardware transmission, including the radio
driver, has been taken from the Contiki implementation. This was done to avoid “reinventing the
wheel”. A detailed explanation of the protocol and radio transmission can be found in [19]. The
xmac component will then return to waiting for another send request or incoming packet.

7.3.2 Radio Receive

When a data packet is received by the radio, a hardware interrupt is generated which will place the
xmac component at the head of the run queue. It is then the job of the xmac component to read the
packet received from the radio’s hardware buffer. It will then construct a RADIO PACKET, popu-
lating the addr field with the source address of the received packet, the payload with the contents of
the packet, and the payload size with the number of data bytes received. This structure is then sent
to the radio component.

Once the radio component has received data from the xmac component, it must then decide what to
do with it depending on the protocol being used. Currently nothing is done, but it is envisaged that
a protocol would require another header to be prepended when sending the data. This would enable
any incoming data to query for the existence of the header and act accordingly. Once the packet
has been processed by the protocol, it will then be sent along that protocols output channel using
the channel multicast send(). At this point a listening Insense application will receive the
data, otherwise it will be lost.

7.3.3 Issues

The main problem with the radio implementation in InceOS is that it is not complete, even though
what is present works correctly. This will be expanded upon in Chapter 9.

The radio is usually the most difficult asset to manage in terms of power consumption. This is due
to the attempt to try and find a balance between having it enabled as much as possible to receive
packets, against having it turned off to conserve power. This is usually achieved by having a duty
cycle, meaning that a separate system entity will be tasked with turning the radio on and off for a
pre-specified amount of time. Within InceOS this task has been given to a system component which

55

interacts with the rtimer component, and is known as the sentinel component. This component
works correctly, however the durations for which the radio is on and off are not correct, meaning
that packets are missed. Due to timing constraints the time values to keep the radio on and off were
not able to be honed, consequently the radio is currently left on permanently.

In terms of power, the radio is also able to control the range of transmission by setting the amount
of power that the radio may consume when sending a packet. Currently this value is always set
to maximum, and an Insense application may not modify this value. However, this can easily be
accommodated by including another field in the RADIO PACKET indicating the level of power to
be used. The xmac component would simply set the value before creating and sending the packet.
This feature was not included due to time constraints.

7.3.4 Pre-InceOS System

Within the pre-InceOS system a similar concept is used to the above, with a single radio component
through which different protocols are accessed via different channels. This component then uses the
Contiki radio stack to send data using the different available protocols. Currently, the pre-InceOS
system does have the advantage of a fully calibrated duty cycle element.

7.4 Debug

In order to enable an Insense application to communicate debugging information, two system com-
ponents are available. The print component and the led components.

7.4.1 Print Component

The printf function is an essential way for a C language program to convey data to a terminal
output. On the t-mote a function of the same name exists which is able to pass information to a
terminal display on a computer, when connected via the USB. In order to offer this functionality
to Insense applications, the printf command is placed inside the behaviour of the print component.
The component acts in the opposite manner to the button component. It waits for incoming requests
from application components on its request channel, as before application components will first
bind to this well known channel. The value passed in this request is then used as an argument to
the printf function. Due to the blocking rendezvous model, locks are not required to ensure serial
access when printing. The value passed should be a string which contains the value to be printed.
This does mean that a maximum string size is specified due to the finite size of the data buffer.
This component does offer the advantage of platform independence by only requiring the printf
function to be replaced by the relevant feature of the platform. If no equivalent is available, then the
component can be removed. As with all the static elements, it would be possible to have the Insense
compiler determine the maximum string size required and pass it as a value to the gcc compiler for
the msp430, to be used in the OS and application.

56

7.4.2 Led Component

Motes will often come equipped with a number of leds (light emitting diodes). In a similar way
to the above printf component, the led component simply acts as a wrapper around the access of
the leds to ensure serialised access. Instead of sending formatted strings to this component, well
defined values are used to indicate the configuration of the leds. These values should either be sent
to one of the two request channels: one for turning on leds, and the other for turning them off. For
example, to turn on all of the leds the LEDS ALL value would be sent along the on request channel,
and to turn of the green led the LEDS GREEN value would be sent along the off request channel.
Again, to aid platform independence, the well known values and functions used to enable or disable
a led are abstract from the workings of the component, and can be easily replaced.

Each of these components have similar equivalents within the pre-InceOS system. The difference
being that InceOS does not require an indirect access via Contiki to invoke the desired action.

7.5 Dynamic Memory

Unlike the other sections in this chapter, memory allocation is not represented by a component.
Instead the well known system calls malloc() and free() are presented.

Within the GCC development kit for the msp430 these system calls are provided, however they were
not compatible with the threaded implementation of InceOS, and were rewritten. The problem was
that when determining if a request from the heap was legal, the difference between the current stack
pointer (plus a small offset) and end of the heap was used. This was not acceptable because of the
following situation. Two components, A and B, have each been created with their own stacks and
assume that this has consumed the heap. A’s stack will be at a lower address than B’s. Now, if A
were to perform a memory request for n bytes, the GCC implementation would query the current
stack pointer and the end of the heap, determine that there is enough space and return a pointer to
that space. A now has the space that it requested, however this space is the same space as B’s stack,
resulting in B’s stack no longer being correct as A writes to it’s allocated memory.

To solve this problem was a simple case of allocating the maximum amount of memory which would
be available to the system throughout its lifetime. This would service every allocation request by
cleaving memory from the initial allocation. However, should a request be made for more memory
after the initial allocation is exhausted, malloc reverts to the above situation. Consequently it was
decided to reimplement malloc and free without the above problem.

Currently a first fit allocation system is used when allocating memory, and the implementations
themselves are based on the algorithms found in The C Programming Language [21].

The pre-InceOS system also offers dynamic memory allocation, however it is reference counted.
This has the advantage, compared to the above, in that any memory will automatically be reclaimed
to the heap whenever the last reference to it is removed. It is the case, however, that for every
allocation a function must be specified along with the size of the allocation. This is due to the fact
that if the allocated space is used for a C struct, then it may contain fields which themselves
are references to allocated memory. If the struct’s memory were simply deallocated, orphaned
storage would be left behind. The extra space used for the function, the need to insert code to

57

increment and decrement the reference count, as well as the functions within the runtime that are
used to support reference counting appear as overhead. Instead, the compiler can statically keep
track of what is allocated and its lifetime during compilation, and simply use malloc and free as
and when required. Also, as InceOS no longer requires data to be intermediately copied when
conducting channel data transfers, static allocations (local variables) are used within behaviour
loops to act as the buffers discussed above for channel sends, receives and selects.

7.6 Name Server

One recurrent theme through this chapter has been the use of well known channels which enable
Insense applications to bind and communicate with the well-known system components. A much
more desirable, and currently unimplemented, option would be the use of a single well known
name server which could be queried to determine the available system component and their respec-
tive channels, in a similar style to a Java RMI name server. The need to discover the available
components is required due to the different hardware platform to which it is intended the InceOS
will be ported.

Chapter 8

Evaluation

The following chapter details the comparison of InceOS against the existing runtime combined with
Contiki.

8.1 Experimental Set-up

In the following all tests are carried out on the t-mote sky hardware platform. This consists of a 25
MHz processor, with 10 KB of RAM and 48 KB of flash storage. The radio used was the cc2420
[6]. During all tests, the t-mote was connected to a computer (pc) via the USB serial port, providing
full power.

In the following graphs, each blue data point represents the average of 100 iterations of the system
element being tested. For example, in Figure 8.1 each data point represent the average time of 100
calls to create a component. The error bars are the standard deviation (σ) over the 100 results for
that particular data point. Each graph also shows the maximum time in red, and minimum time in
green to complete the action being tested. For each comparison between InceOS and the runtime,
all elements were kept the same, this includes the number of component in each system.

As noted in the proposal for this work, it was a concern that the Insense compiler would not be
targeted to the virtual machine in time for testing and this was the case. As a result, all of the
Insense examples used to test InceOS were hand crafted to mimic the expected output from the
compiler if it were to have been re-targeted.

In the following results, timing was taken from the millisecond timer, timerB. One of the problems
when collecting results arises from the granularity of the timer, specifically it is not fine enough
to observe completely accurate values, as the smallest observable time difference is two hundred
and forty four microseconds. This is insufficient in some cases, such as the context switch times
for InceOS which are calculated at approximately nine to fifteen microseconds. This also leads
to noticeable quantisations in the results, particularly for InceOS. For example, in Figure 8.1 (b),
a distinctive oscillation between the values of 244 ms and 488ms can be seen in the maximum
duration of creating a component.

58

59

8.2 Size

In terms of size there are two measurable quantities. The first is the amount of flash space that is
occupied and the second is the amount of RAM that is occupied.

8.2.1 Flash Occupancy

Element Code Size (bytes) Data (bytes) bss (bytes)
Contiki (complete) 60506 (123.00%) 315 6517
InceOS (complete) 13684 (27.84%) 72 3032
runtime (complete) 9275 (18.87%) 58 0

Table 8.1: Complete System Flash Occupancy

Table 8.1 shows the differing amount of flash consumed on the t-mote by each system alone, the
null application is specified. Firstly, the absolute number of bytes used, in brackets showing the
total amount of space which could be consumed as a percentage. Secondly, the size consumed by
global and static variables which are not initialised (data). Thirdly, global and static variables which
are initialised to zero (bss).

As previously noted, Contiki and the runtime both use conditional compilation in an attempt to
reduce the size of the binary which is produced. In this way, only the required system elements are
included in the compilation action; for example, if an Insense application does not use the radio,
the runtime will not include the runtime elements required to use the radio, and Contiki will not
include its elements required to run the radio. Contiki will also do this independently for its own
native applications. Consequently, Table 8.1 shows the amount of space that would be consumed
by each system in its entirety with every component included, even though it is not possible for
Contiki to fit on the mote. By comparison with Contiki and the runtime combined, InceOS is less
then a quarter the size in terms of flash occupancy, less than a fifth the size in terms of the data
section, and under half the size in terms of the bss section. This is not a fair comparison as InceOS
does not support all of the functionality offered by Contiki, consequently the following tables show
the flash occupancy when running an Insense application which uses different system elements.

60

Element Code Size (bytes) Data (bytes) bss (bytes)
Contiki 19236 (39.14%) 224 1985
runtime 7598 (15.46%) 38 160
application 938 (1.9%) 22 20
TOTAL 27772 (56.5%) 284 2165

Table 8.2: Runtime Hello World Sizes

Element Code Size (bytes) Data (bytes) bss (bytes)
InceOS 13648 (27.84%) 72 3032
application 110 (0.15%) 0 0
TOTAL 17012 (27.99%) 72 3032

Table 8.3: InceOS Hello World Sizes

Element Code Size (bytes) Data (bytes) bss (bytes)
Contiki and runtime 34679 (70.55%) 272 2247
application 7674 (15.61%) 22 20
TOTAL 42326 (86.11%) 294 2267

Table 8.4: Runtime Radio Send Sizes

Element Code Size (bytes) Data (bytes) bss (bytes)
InceOS 13648 (27.84%) 72 3032
application 578 (1.11%) 0 0
TOTAL 15656 (28.95%) 72 3032

Table 8.5: InceOS Radio Send Sizes

Comparing Tables 8.2 and 8.3 shows the sizes for a simple hello world program which outputs
“Hello World”. Comparing the system sizes, InceOS is smaller than the combination of the runtime
and Contiki. This is due to InceOS being specific to the needs of the Insense language, rather than
the current conglomeration of an Insense specific runtime animated by a general purpose embedded
OS. In particular, there is a large reduction in the size required for the application itself.

Tables 8.4 and 8.5 show the sizes for an application using the radio. This is where the most notice-
able savings made by InceOS can be seen. Firstly, due to conditional compilation, the runtime and
Contiki combination is larger when compared to the simpler Hello World program. InceOS stays
the same size. Secondly, due to the presence of stacks in InceOS, it does not require as much static
allocation or dynamic variables, instead using local variables. Accordingly, the size of the radio
application for InseOS is considerably smaller than the pre-InceOS system.

61

By reducing both the size of the animation system and that of the C program produced by the
Insense compiler, less flash space is used and is available for either growth of the OS to include
more services, or for the authoring of more Insense applications with greater complexity. Currently
InceOS is only implemented on the t-mote sky platform with 48KB of flash, however the small
size of InceOS and the applications that it will animate will remain almost constant as they are
run on different platforms with greater flash capacities. The only possible growth in terms of size
would come from the platform specific elements, however these are only a very small part of the
implementation.

8.2.2 RAM Occupancy

Due to the threaded nature of InceOS, each component requires its own stack and, as previously
mentioned, this stack must be big enough to support both the component’s behaviour and the func-
tions calls made into the OS. Accordingly, InceOS has a higher RAM usage than the pre-InceOS
system.

Element Available RAM (bytes)
InceOS 3491
Runtime Without Radio 3416
Runtime With Radio 3284

Table 8.6: Post Initialisation Available Memory

Table 8.6 shows the amount of memory available immediately after each system has been initialised.
Contrary to initial assumptions, InceOS only shows a slightly larger amount of available RAM,
however there are two things to consider.

The first is that InceOS uses a large amount of statically allocated space, as can be seen in the larger
bss sizes for InceOS in the tables in Section 8.2.1. As an example, the CHAN structure occupies
9 bytes of space, and there are currently 160 of them allocated. This alone consumes 1.4 KB of
space. The second is the size of stack required per component. Currently, 120 bytes are added to
each requested component to allow for system and interrupt stack requirements. This is in addition
to the 19 bytes for the CCB structure, required for each component. As the above results are for
post system initialisation, the system and well known components have already been allocated.
The amount of memory available before the system creates any system components is 6787 KB of
RAM.

8.3 Timing

This section presents a comparison of the duration of different actions in each system, primarily
focusing on the system calls.

62

8.3.1 System Call Timings

Component Create

(a) (b)

Figure 8.1: Component Creation

Each graph in Figure 8.1 shows the duration for the creation of an Insense application’s first com-
ponent, immediately after the system has been initialised. By a comparison of the average times,
InceOS is 67 times faster than the current runtime, reducing the average from 6.7ms to 0.16ms. It
can also be seen that InceOS presents a smaller standard deviation than the runtime, leading to more
consistent results.

A justification of the improvement is because the process of creating a component in the runtime
over Contiki is more involved than for InceOS, Section 4.1.2. The Insense compiler must statically
create a pointer which will be used to hold a reference to the component. The creating component
will call a function which is used to allocated a Contiki protothread, passing it a pointer to the
creating component. This function is also used to allocate memory for the this structure for the
component. During this initialisation, the component structure will use the unique identifier for
the Contiki process as its own, it will also take copies of all the data structures required to interact
with the protothread. The statically allocated global variables associated with the component are
then initialised with a component specific function, essentially the constructor function. It is at this
point that any required channels are created. These global variables are required due to the fact
that a protothread does not maintain its local state after a blocking or yielding call. The final task
is to actually create the protothread and start it. This involves several Contiki system calls, and
eventually posting an event back to the calling component to indicate that the new protothread is
complete and that it may continue its execution. It is worth noting at this point that the runtime
still constructs a “vtable” in order to keep track of all the state and functions associated with a
component, even though this is a depreciated aspect of the runtime.

63

Component Exit

(a) (b)

Figure 8.2: Component Exit

A comparison of the time required to terminate a component is shown in Figure 8.2. Although not
as drastic an increase as can be seen in the creation of a component, there is still a 46 % decrease in
the time required.

Within the pre-InceOS system, disposing of a component is not as simple as in InceOS. As a com-
ponent is a dynamically allocated data structure and a protothread, a component must be destroyed
in two stages. Firstly, the memory allocated for the component itself and any channels it used must
be returned, however Contiki must clear up the protothread that was used to animate the component.
In order for Contiki to destroy a protothread a complex series of actions must take place involving
many functions. Upon returning from a protothread which is to be destroyed, a function called
exit process() is invoked. This function must first broadcast to all protothreads in the system
that this protothread is about to die. This is done to enable any services which have allocated space
for the process to deallocate it. This stage alone requires that every other protothread in the system
be executed before destroying the protothread. As previously discussed, each protothread will exe-
cute until it explicitly yields or blocks. The protothread to die will then again be invoked with the
PROCESS EVENT EXITED event in case it requires to deallocate any state. This has already been
taken care of by the runtime. Finally, the protothread is removed from the run queue.

Unlike InceOS, where the CCB data structure is allocated and deallocated, the analogous process
structure within Contiki is implicitly declared as part of the function that is executed by the pro-
tothread, via a C pre-processor macro. Consequently it does not need to be deallocated when a
protothread dies. However, in the case that a protothread is dead and never returns, the process
structure simply occupies space in the flash.

64

Component Stop

System Time (µs)
InceOS 0.32
Runtime + Contiki 0.56

Table 8.7: Component Stop Times

Table 8.7 shows the duration of the component stop() in InceOS and its equivalent in the
runtime. This shows InceOS to be faster. These results are not displayed in graph form as they
were calculated from the number of assembly instructions required to execute the action. This was
necessary as measurement with the timer constantly yielded zero. To illustrate, InceOS requires 8
CPU cycles and each cycle takes 40 ns, thus the action takes 320ns.

The runtime uses a similar method to InceOS to enable one component to terminate another, using
the stopped member of the this structure. However, the runtime requires some more state to be
stored. This is why InceOS is only slightly faster, and why both results are on a small scale. One
major difference between the runtime and InceOS is in what happens after the stop call has finished.
In InceOS, the invoking component continues execution, however the runtime will block, waiting
for an event to indicate that the component which has been instructed to terminate has done so.
The timing of this was not measured as it is dependent firstly on the number of other components,
including those made eligible by interrupt, that are executed before the targeted component, and
secondly on the point at which targeted component previously ceased execution. Between resuming
execution and reaching the loop test of its behaviour, the component may block a number of times.

65

Component Yield and Pre-Emption

Context Switch Method Best Case Worst Case
Yield or Block 9.28 µs 9.8 µs
Pre-Emption 14.68 µs 15.2 µs

Table 8.8: Context Switch Times

(a)

Figure 8.3: Runtime Yield

Similar to stopping a component, yielding a component in InceOS was too fast to be detected by the
timer being used, and accordingly instructions were counted. This was not required for the runtime.
Table 8.8 shows the times required for InceOS to swap between components either by an explicit
yield request or by interrupt driven pre-emption. The worst case column refers to the situation
where the InceOS run queue is emptied and the head and tail values must be correctly updated,
the best is when this does not happen. Figure 8.3 shows the results for an explicit yield request
in the runtime, Contiki does not support pre-emption as previously discussed. By comparing the
results for an explicit yield request it can be seen that InceOS is 51 times faster than the runtime
in the worst case, and 32 times faster in the worst case when comparing a runtime yield against
pre-emption in InceOS. The effect of adding pre-emption can be observed in Section 8.4.

66

Channel Create

Contributions to Time Time
Basic Time 4.6 µs
Number of Component Channels 0.52 µs
Total Number of Channels 0.52 µs
Number of Channel Links 0.48 µs

Table 8.9: InceOS Channel Creation

(a)

Figure 8.4: Runtime Channel Creation

Figure 8.4 shows the time taken to create a channel within the runtime. Table 8.4 shows the basic
time for creating a channel plus a number of situation dependent additions to the basic time. Number
of component channels refers to the number of channels that the component to which the new
channel will be assigned already has associated with it, Section 5.1. Total number of channels
refers to the number of channels which must first be searched when finding a channel to use from
those which have been statically allocated. The number of links refers to the number of connections
that a channel has and must be initialised. For example, if a component already has 6 channels, then
creating another will add 6 × 0.52 microseconds to the basic time. If one hundred channels have
already been allocated, then this will add 100 × 0.52 microseconds to the basic time. If a channel
is allowed to form eight different bindings, then this will add 8 × 0.48 microseconds to the basic
time. All of these scenarios have a cumulative effect on the time. Currently, the worst case scenario
in InceOS has these values at 19, 157, and 8 respectively. This gives a worst case creation time of
99.96 µs, 10 times less than the runtime average.

When creating a channel within the runtime, it is allocated directly from the heap. There is no limit
imposed on the number of channels which may be created or associated with a component, only
the available memory limits this. It is the job of the Insense compiler to generate code to associate
channels and component. The advantage in InseOS comes from the pre-allocation of space.

67

Channel Destruction

The time taken to destroy a channel is exactly 2.48µs. In addition to this, the channel to be destroyed
must first be unbound to prevent dangling connections, the time taken for this can be seen in Figure
8.6. Within the runtime, there is no explicit mechanism to destroy a channel as their numbers
are not constrained. As a result, channels are destroyed whenever their associated component is
destroyed. Time did not permit testing of this aspect, however it would be possible to measure this
by measuring the destruction time of a component with 0 channels, one with n channels, and using
the difference to indicate the duration.

Channel Duplicate

(a)

Figure 8.5: Runtime Channel Duplication

Figure 8.5 shows the time taken to duplicate a channel in the runtime. It should be noted that unlike
InceOS, duplication of a channel is not a distinct function, but rather it occurs as and when required
as an integrated part of the runtime itself.

Within InceOS, duplication of a channel takes 8.76µs. As previously mentioned, duplication of a
channel relies on the create and bind system calls. Consequently, these times, Table 8.9 and Figure
8.6, are in addition to this basic time.

Channel Adopt

Within the runtime, the notion of adopting a channel does not exist. Within InceOS 13.28µs are
required to adopt a channel in the worst case.

68

Channel Bind and Unbind

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.6: Channel Binding Times

69

Figure 8.6 shows the different durations required to bind together channels in the different systems.
Comparing (a) - (d) it can be seen that InceOS is faster but not by such a large margin. However,
comparing (e) - (h) it can be seen that InceOS scales better than the runtime, with no significant
change.

As previously discussed, the pre-InceOS system has no limits on the number of channels. Therefore,
when binding together channels, a pointer to each channel to be bound is placed in a linked list
associated with the other. This accounts for the fairly consistent results in (a) and (c). However,
when unbinding eight channels this linked list must be traversed, with each pointer followed to the
other bound channel to remove the references. Unlike the direct access to data structures in InceOS,
the runtime uses function calls to access the lists, and also requires functions calls to handle the
reference counted memory.

Channel Send

(a) (b)

(c) (d)

Figure 8.7: Send Times of a Singly Bound Channel

Figure 8.7 shows the times required for both the runtime and InceOS to send data along a channel
when the receiver is both ready (blocked) and not ready (unblocked). From a comparison of (a) and
(b) it can be seen that InceOS is 22 times faster than the runtime, and from (c) and (d) and increase
of 18 times.

Compared to InceOS (Section 6.3.9), the act of sending data along channel is different. Whenever
a send request is placed, the runtime will generate a new Contiki protothread which is specific to

70

the request in terms of the component (protothread) making the request, the channel and the data -
i.e. these fields are copied into a new structure supplied to the protothread. When this protothread
is run it will check for any connections, if none are present it will then wait on an event signifying
a binding, which is generated when two channels are bound. If there are connections, then the
linked list in which these channels are kept is traversed to find any eligible matches. Matches
are determined by a state flag associated with each channel. If there are eligible channels found
then the data is copied directly from the sending component’s buffer into the receiving channel’s
buffer, the receiving channel’s buffer flag is reset, and an event sent to the sending component’s
protothread, signifying the completion of the data transfer. At some later point when the receiver is
executed, the data will be copied from the channel’s buffer into the component’s buffer. If there are
no eligible channels, then the protothread will block waiting for an event to indicate the data was
taken and update its status flag. In this case, the sender will copy its data into the buffer associated
with the channel being sent over. When executed, the receiver will copy the data being sent into its
component buffer and post the receive event to the sender. Figure 8.8 indicates where the buffering
is taking place. In the case of a send call which blocks, buffers 1, 2, and 4 are used. In the case of a
send call which does not block buffers 1, 3, and 4 are used.

Figure 8.8: Buffering in the Runtime

It is worth noting that Insense requires a non-deterministic section when sending or receiving across
channels which have a 1:N or M:1 configuration. This is explicitly done in InceOS by using a
random number generator, however within the runtime this non-determinism is simply the result
of the state in which the connected channels are found in, dictated by the status flags of channels.
Consequently, the runtime does not guarantee a fair selection when choosing a connection.

The faster times of InceOS can also be attributed to the close relationship between channel states
and the scheduler, compared to the pre-InceOS system.

71

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.9: Send Times Over a Channel With 3 Bindings

72

Figure 8.9 shows a comparison between InceOS and the runtime when executing a send over a
channel which is bound to three others. The difference between the results, as indicated in the graph
titles, is whether or not the receiving channel’s component is ready (blocked) or not (unblocked).
Each channel is in a separate component, and each of the above rows shows the same operation in
each system.

Again, InceOS dramatically outperforms the runtime in each case. An interesting observation is the
linear increase in the improvement from InceOS seen in the first three rows of 24, 32, and 38 times.
The last row is only an improvement of 19 times. Time did not permit, however an extension to this
experiment would be to increase the number of channels involved to determine if this increase is
constant, grows, or shrinks.

As previously discussed, the runtime does not provide fair determinism when choosing a channel
from multiple eligible channels, it selects the first available. In contrast to this, InceOS examines
all channels before making a decision. Consequently, if the channels in (c) were arranged with
the blocked channel being the first in the connection list, then results found in (a) would be seen.
However, as can been seen in (c) this performance will always be degraded when the non-eligible
channels come first. The justification of the improvement of InceOS is the same as for the single
send.

Tests were not performed for the receive operation as it is symmetric to the send operation in both
systems.

73

Channel Select

(a)

(b) (c)

(d) (e)

Figure 8.10: Select Times Without Ready Arms

Figure 8.10 shows the duration of the select call in each system when no arms of the select state-
ments (channels) are either eligible to receive data due to their associated guard values, (a), or the
channels are not ready to send their data, even though they are eligible, (b) - (e). There are a total
of three channels being selected over. It was only required to test the guard values as either being
all true or all false as once the number of eligible channels were determined from the guard values,
both systems consider there to be only as many channels as were eligible.

For InceOS, the case of no guard value being true, with the default specified was faster than the
system tick and was therefore calculated at 5.52µs. This is 688 times faster than the values of
(a). A comparison between (b) and (c) shows an improvement of 29 times and an improvement

74

of 12 times between (d) and (e). These results are consistent when compared with Figure 8.7,
accounting for the increased number of component operating in the system. The justification for
the improvement again comes from the fact that InceOS is customised exactly to the requirements
of Insense, compared to the Insense specific runtime which is subservient to Contiki.

(a) (b)

(c) (d)

(e) (f)

Figure 8.11: Select Times With Ready Arms

Figure 8.11 shows the duration of the select statement when arms become eligible. In each row
a clear improvement is shown by InceOS when compared to the runtime. When comparing (a)
and (c) against (b) and (d) there is a consistent improvement of approximately 15 times, however
the comparison between (e) and (f) shows an improvement of 17 times. Time did not permit,
however it would have been interesting to expand the number of channels involved during the tests
to discover if the improvement is linear in relation to the number of channels or if the runtime’s

75

duration increases at a greater rate than that of InceOS.

8.3.2 Radio

(a) (b)

(c) (d)

Figure 8.12: Radio Send and Receive Times

Figure 8.12 shows the time taken for a radio packet to be sent from an application component to the
lower level mac layer component, (a) and (b), and for an incoming packet to be sent from the mac
layer component to the receiving application component, (c) and (d). As stated in Section 7.3, the
mac protocol within InceOS is not fully optimised to the same standard as the one found in Contiki,
therefore a comparison of radio transmission times would not be fair. Altering the Contiki layer
to contain the same deficiencies would not present an accurate representation of the pre-InceOS
system. The only user component in the system is either a sending component for the send tests, or
a receiving component for the receive tests.

The first point to note is the consistency in the results for InceOS, the runtime displays a 1ms
increase in the average time when receiving a packet from the radio, the precise cause of this is
not clear. The second point is the almost three times decrease in the duration of each action within
InceOS. This is a combination of the improved channel communication facilities, as well as the
more powerful scheduler. It is also the case that InceOS does not use the Rime stack [10] found in
Contiki, which requires that a protocol transmit data through each lower protocol level before being
physically transmitted, in the reverse situation a packet must traverse up the stack to the appropriate
layer.

76

8.3.3 Timer Delay

Figure 8.13 shows the delay between when a timer interrupt should be delivered and when it actually
is delivered using the timerA clock. This is done as the runtime does not support Insense programs
using the (millisecond) timerB clock. (a) and (b) show the results for a single component requesting
a timeout of one second. (c) and (d) shows the results for five components all requesting one
second timeouts at the same time. For the latter results, the measurements were taken from the last
component to run so as to collect the worst case results. In all cases, the delay time includes the
transit time of the data from the timer to a component.

(a) (b)

(c) (d)

Figure 8.13: Rtimer Component Delay

By comparing (a) and (b) in Figure 8.13 it can be seen that InceOS is faster in reference to the
averages observed, however the minimum times seen in (a) show that the runtime can be quicker.
This is due to the implementation of the runtime going outside of the constraints of the language and
not relying on the standard channel communication process to communicate with the component
who requested the time out. Instead, the runtime directly interacts with the requesting component’s
channel buffer and generates the appropriate event, bypassing the creation of Contiki process and
data duplication. This also accounts for the fact that the delay is smaller than the standard time
required to send a message over a channel.

When comparing (c) and (d) it can be seen that this “cheating” from the runtime does not enable the
improvement to scale as the number of components increases. InceOS has some initial difficulties
trying to service five requests for the same moment in time, leading to a unique spike in each set of

77

results (d) of 2 ms . However, as the delay measured is the cumulative effect of the timer delay plus
the time taken for the preceding components to execute and block, the gap between when exactly
each time request is due grows, enabling InceOS to service the request in a more timely manner.

8.4 Throughput

In order to test the throughput of the system, an example Insense application was created. One
representation was generated by the Insense compiler from an Insense language program, the other
was hand crafted. So as not to simply test toy examples, a real world application was created which
collected data from the sensor components, averaged them over one thousand iterations and then
communicated those averages to another component; the radio was not included in this test as it is
not complete. Considering this task is representative of the essential function of a sensor mote, it
was the only one used. There were five components each performing this task in parallel for the
test.

System Duration (s) Time Quantum (s)
Runtime 203.3982 ± 0.091 N/A
InceOS 149.7886 ± 0.615 1
InceOS 151.036 ± 0.109 0.03125

Table 8.10: Throughput Tests

Table 8.10 shows the results. It can be seen that InceOS was 54 seconds (25%) faster compared
to the runtime with a time quantum of one second. When using a smaller quantum of 31ms, the
performance is worse. This is due to the fact that the example task naturally blocks in order to
communicate with other components, consequently a component does not execute for long enough
for the pre-emption to have an effect. Therefore, the smaller quantum only has the effect of needing
to check the pre-emption lock more frequently, taking time away from the component’s execution.
This could be indicative of pre-emption not being as useful an addition to a sensor mote as first
predicted, considering that Insense uses the blocking rendezvous model, and is a good indication
that further experimentation is required in this area.

Within the runtime is a component called the tick scheduler, and it is this that acts as the scheduler
for Insense programs. This implementation is logically equivalent to that of the timer component
discussed in Section 7.1.1. This scheduler works by using the channel mechanism to send “ticks” to
a component, at a time initially specified by the component. A component will first block waiting for
a tick, and then upon receipt of a tick, the component is able to proceed. However, as components
are implemented by protothreads, and it is the responsibility of Contiki to schedule protothreads, the
scheduling of a component is ultimately dictated by the scheduling of the underlying protothread
by Contiki.

Blocking and unblocking components makes use of the event driven nature of Contiki. In order to
enter a component into a blocked state, the runtime will invoke a PROCESS WAIT EVENT UNTIL
request on one of a number of given events that are either defined by Contiki or by the runtime. This
will cause the protothread to remain in the list representing the protothreads, but not be eligible
to be scheduled until the event upon which the protothread blocked is generated and delivered.

78

Unblocking a component (protothread) involves generating the required event and either posting it
directly to the process, or broadcasting the event to all processes. The run queue within Contiki is a
static list of protothreads, in the sense that protothreads which have blocked waiting for events will
remain in the list. The scheduling algorithm consists of the following: once the current protothread
returns, go to the next element in the list which is ready to run and invoke it. This process requires
querying every protothread until one is found.

8.5 Power Consumption

It was intended that a comparison of the power consumed by each system during its operation would
be conducted, however this was not carried out. To calculate the power which was consumed,
the current I and voltage V present in the system would be required, the power P could then
be calculate by P = I · V . The voltage can be measured by using the internal voltage sensor
of the t-mote, however in order to obtain the current values an oscilloscope would be required,
connected across the battery terminals. At the time of conducting the experiments no oscilloscope
was available, and due to timing constraints, one was not procured.

At first glance it may appear possible to monitor the voltage levels across the OS and runtime
operations, however due to the fact that batteries will sacrifice longevity in order to maintain their
maximum potential, this was not feasible or insightful [22].

Consequently, it can only be assumed that due to the reduced times and fewer instructions needed
for system operations in InceOS compared to the runtime, less power is being used; however this is
not currently proven.

Chapter 9

Future Work

Future directions for the work documented in this project can be split into two categories: improve-
ments to the existing work and future directions.

9.1 Improvements and Optimisations

Currently InceOS uses statically allocated data structures to save on memory fragmentation during
runtime; however these values are currently educated guesses. A much more desirable option is
to have the Insense compiler determine the exact requirements of the system and pass these values
as compiler arguments. InceOS currently uses compiler macros for these values, and this addition
would be a simple change.

Insense has an error reporting system that uses the return values of certain system calls to indicate
the presence of errors. Currently, InceOS does not completely support this.

InceOS requires that an extra amount of stack space be allocated in addition to the space required
by a component’s behaviour, in order to meet the space needs of the system calls and interrupts.
Instead of allocating this space on a per stack basis a better option is to have a system stack which
could be switched to upon entry of a system call. This would reduce the RAM consumed, enabling
more components to exist. Consequently, the registers saved during a context switch would need to
be saved in the CCB of the component. At present, this is the main limiting issue for InceOS.

Discovery of system components currently involves the use of well known functions to gain access
to these components’ channels. This strategy relies too much on the compiler’s knowledge of what
components exist in the targeted system, and is not very generic. A better solution would be to
have a single well known name server component, which must be provided by InceOS on every
platform. This would enable a single process to detect system components, by querying the name
server on any platform.

Both Contiki and the runtime use conditional compilation to only include the system modules which
an application is using. InceOS does not use this yet, however it is almost complete in the sense
that all of the InceOS modules are individually compiled into object files, which are placed into
an archive file. The normal procedure is to have the application only form links during the linking

79

80

phase with the required objects files. All that is required to successfully integrate conditional com-
pilation into InceOS, is to decouple a number of system modules to ensure that they do not form
dependencies and link with modules which are not required by the application. It is also possible
to have the Insense compiler pass compiler time arguments to the gcc compiler which would not
compile certain modules at all.

9.2 Future Directions

The first area for future research is in relation to the scheduler within InceOS. Currently, only
a simple round robin scheduler is used, offering some priority boost to components which are
unblocked by interrupts. This leaves substantial room to take better advantage of the states that
components can be in. For example, if a component which was in a blocked state is unblocked by
another component, it would make sense to give this component a priority boost to account for the
lost time it spent being blocked. This could be achieved via a number of different priority queues
within the scheduler.

More implementation than research is the goal of porting InceOS to different platforms. Apart from
making InceOS and ultimately Insense more accessible, it would also enable Insense to run on plat-
forms with more flash memory and RAM. This would enable more complex Insense applications
to be run.

As previously mentioned the protocol component is not complete, missing key elements such as a
network discovery protocol which is required for a sensor networked device. However, rather than
simply adding this functionality to the OS, a more desirable option is to abstract over radio commu-
nications completely, enabling components on different devices to communicate in the same way
that components on the same device do. This could be achieved via the use of proxy components
which would be automatically generated by the Insense compiler, however this raises an issue be-
cause of the blocking semantics of the language. Once an application component has sent its data to
the proxy then it should technically resume execution, however as it has not sent its data to the re-
cipient component on the other mote, it should not continue to execute. This presents an interesting
area for future research.

As stated in the introduction, Insense is a language based on the π-calculus which has enabled
elements of the pre-InceOS system to be verified via the SPIN model-checker. The next logical step
would be to apply these techniques to InceOS in a similar manner. Considering the simpler nature
of InceOS, it is expected that this model would be simpler than the one required for the pre-InceOS
system, enabling more extensive verification of the system.

Through a combination of the previous three points, one of the ultimate goals for both InceOS and
Insense would be an automated development process, whereby an initial design phase could be used
to decide the tasks of different components, as well as their physical locations on different motes.
Also, a development phase which could include automated verification of the Insense application
itself to ensure properties such as channel deadlock doesn’t occur, as well as assistance to the
developer in the actual implementation. These phases would seem to naturally fit with inclusion
into a development environment such as Netbeans, thus fully realising the goal of Insense to remove
the barrier present for non-experts to author complex, concurrent, real-time, resource-constrained
applications for wireless sensor networks.

Chapter 10

Conclusion

This dissertation has described InceOS, an operating system which has been successfully created to
meet the needs of the Insense language.

In Chapter 2 a scarcity of research was identified in relation to language specific operating systems
for embedded devices. Instead, the focus for this particular area was either generic systems which
also operate on embedded devices, or systems specifically for embedded devices that offer unintu-
itive, complex, and possibly irrelevant programming interfaces. In contrast, InceOS is tailored to
the needs of the embedded platform, and offers a simple and tailored programming interface for the
Insense compiler to generate C representations of Insense programs.

Chapter 8 shows empirically that InceOS is smaller, faster and more efficient in terms of both con-
sumed space and speed, by comparison with the pre-InceOS system. As discussed in the previous
chapter, there is still room for improvement in the OS, as well as areas for future research.

There is a noticeable growing trend for the creation of domain specific languages to solve prob-
lems, with these languages being compiled into the intermediate form of an existing system such
as Java [29]. Considering the time scale of three months for design, implementation and testing of
this project by one individual, it seems likely that for embedded systems, the authoring of custom
operating systems is a viable option in the future.

This project has been a success, and will enable the growth of Insense as a programming language,
as it is now animated by a much more feasible real-time system, enabling the resource-constrained
motes to achieve an almost limitless potential.

81

Bibliography

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, pages 164–177,
New York, NY, USA, 2003. ACM.

[2] Gregory D. Benson and Ronald A. Olsson. A portable run-time system for the sr concurrent
programming language. In In Proceedings of the Workshop on Run-Time Systems for Parallel
Processing. IR-417, Department of Mathematics and Computer Science, Vrije Universiteit,
Geneva, Switzerland, April 1997.

[3] Luc Bläser. A component-orientated language for pointer-free parallel programming. Master’s
thesis, Computer Systems Institute, ETH Zürich, August 2007.

[4] Luc Bläser. A high-performance operating system for structured concurrent programs. In
PLOS ’07: Proceedings of the 4th workshop on Programming languages and operating sys-
tems, pages 1–5, New York, NY, USA, 2007. ACM.

[5] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and implement-
ing choices: an object-oriented system in c++. Commun. ACM, 36(9):117–126, 1993.

[6] Moteiv Corporation. T-Mote sky manual. Motiev Corporation, Moteiv Cor-
poration, 55 Hawthorne St, Suite 550, San Francisco, CA 94105, June 2006.
http://www.eecs.harvard.edu/(tilda)konrad/projects/shimmer/references/tmote-sky-
datasheet.pdf , Accessed 19/11/2009.

[7] L. A. Crowl. Concurrent data structures and actor programming under the matroshka model.
In OOPSLA/ECOOP ’88: Proceedings of the 1988 ACM SIGPLAN workshop on Object-based
concurrent programming, pages 79–80, New York, NY, USA, 1988. ACM.

[8] Alan Dearle, Dharini Balasubramaniam, Jonathan Lewis, and Ron Morrison. A component-
based model and language for wireless sensor network applications. In COMPSAC ’08: Pro-
ceedings of the 2008 32nd Annual IEEE International Computer Software and Applications
Conference, pages 1303–1308, Washington, DC, USA, 2008. IEEE Computer Society.

[9] Sean Dorward, Rob Pike, David Leo Presotto, Dennis Ritchie, Howard Trickey, and Phil
Winterbottom. Inferno. In COMPCON ’97: Proceedings of the 42nd IEEE International
Computer Conference, page 241, Washington, DC, USA, 1997. IEEE Computer Society.

[10] Adam Dunkels. Rime — a lightweight layered communication stack for sensor networks. In
Proceedings of the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo
session, Delft, The Netherlands, January 2007.

82

83

[11] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible oper-
ating system for tiny networked sensors. In LCN ’04: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, pages 455–462, Washington, DC,
USA, 2004. IEEE Computer Society.

[12] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: simplifying
event-driven programming of memory-constrained embedded systems. In SenSys ’06: Pro-
ceedings of the 4th international conference on Embedded networked sensor systems, pages
29–42, New York, NY, USA, 2006. ACM.

[13] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. The flux
oskit: a substrate for kernel and language research. In SOSP ’97: Proceedings of the sixteenth
ACM symposium on Operating systems principles, pages 38–51, New York, NY, USA, 1997.
ACM.

[14] Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick Tullmann. Interface
and execution models in the fluke kernel. In OSDI ’99: Proceedings of the third symposium
on Operating systems design and implementation, pages 101–115, Berkeley, CA, USA, 1999.
USENIX Association.

[15] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
The nesC language: A holistic approach to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, volume 38, pages 1–11, New York, NY, USA, May 2003. ACM.

[16] K John Gough. Stacking them up: a comparison of virtual machines. In ACSAC ’01: Pro-
ceedings of the 6th Australasian conference on Computer systems architecture, pages 55–61,
Washington, DC, USA, 2001. IEEE Computer Society.

[17] Jürg Gutknecht. Do the fish really need remote control? a proposal for self-active objects in
oberon. In JMLC ’97: Proceedings of the Joint Modular Languages Conference on Modular
Programming Languages, pages 207–220, London, UK, 1997. Springer-Verlag.

[18] Jennifer Hamilton. Language integration in the common language runtime. SIGPLAN Not.,
38(2):19–28, 2003.

[19] Paul Harvey. Xenocontiki. Technical report, The University of Glasgow, Glasgow, Scotland,
April 2008.

[20] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. Sys-
tem architecture directions for networked sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104,
2000.

[21] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice Hall
Press, Upper Saddle River, NJ, USA, 1988.

[22] Alexandros Koliousis. An elementary proposition on the dynamic routing problem in wireless
networks of sensors. PhD thesis, University of Glasgow, Department of Computing Science,
2010.

[23] Justin T. Maris, Matthew D. Roper, and Ronald A. Olsson. Descartes: A run-time system with
sr-like functionality for programming a network of embedded systems. Computer Languages,
Systems & Structures, 29(4):75–100, 2003.

84

[24] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

[25] Sun Microsystems. The java hotspot virtual machine. White Paper, Sun Microsystems, 2001.
Accessed on 23/11/09.

[26] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Inf.
Comput., 100(1):1–40, 1992.

[27] Pieter Muller. A multiprocessor kernel for active object-based systems. In JMLC ’00: Pro-
ceedings of the Joint Modular Languages Conference on Modular Programming Languages,
pages 263–277, London, UK, 2000. Springer-Verlag.

[28] Chris Porthouse. Jazelle dbx technology: Arm acceleration technology for the java platform.
Technical report, ARM, 2005.

[29] Arno Puder, Sascha Haeberling, and Rainer Todtenhoefer. An mda approach to byte code level
cross-compilation. In SNPD ’08: Proceedings of the 2008 Ninth ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, pages 251–256, Washington, DC, USA, 2008. IEEE Computer Society.

[30] Steven H. Rodrigues, Thomas E. Anderson, and David E. Culler. High-performance local
area communication with fast sockets. In ATEC ’97: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages 20–20, Berkeley, CA, USA, 1997. USENIX
Association.

[31] Oliver Sharma, Jonathan Lewis, Alice Miller, Al Dearle, Dharini Balasubramaniam, Ron Mor-
rison, and Joe Sventek. Towards verifying correctness of wireless sensor network applications
using insense and spin. In Proceedings of the 16th International SPIN Workshop on Model
Checking Software, pages 223–240, Berlin, Heidelberg, 2009. Springer-Verlag.

[32] Crossbow Technologies. Product description of the imote2 hardware platform. Web
Site, 2009. http://www.xbow.com/Products/productdetails.aspx?sid=253 , Accessed on
29/03/2010.

[33] M. Weiser, A. Demers, and C. Hauser. The portable common runtime approach to interop-
erability. In SOSP ’89: Proceedings of the twelfth ACM symposium on Operating systems
principles, pages 114–122, New York, NY, USA, 1989. ACM.

Appendix A

Examples

The goal of this chapter is to show an example of how an Insense language program is turned into
an equivalent C language implementation for use with the InceOS.

The program itself is collecting data from the sensors (available to the t-mote sky) and then printing
the readings on standard output, as well as reflecting any changes by activating the corresponding
leds.

A.1 Insense Language Version

A.2 Compiled C Implementation

Appendix B

InceOS Virtual Machine Specification

