A Feasibility Study of Cache in Smart Edge Router for Web-Access Accelerator

Krittin Intharawijitr (Internship) Paul Harvey, Pierre Imai December 7th, 2020

Rakuten Mobile Innovation Studio

Content Delivery Networks (CDNs) with telecommunication operators

- Edge infrastructure: Reduce latency of streaming video content to users
- Deployed in telecommunication networks

Smart Edge Routers (SERs)

- Set-top boxes or WiFi routers to share internet access.
- Closer end-point to the user

Industry products of SERs

CacheBox

• A product for a network administrators which supports cache and networking functions

NightShift

• Collaboration between an internet service provider (ISP) and Netflix

Smart Home Gateway

• A router that connects and manages all smart devices in a house.

Mobile Routers:

• Wi-Fi hotspots from Mobile Network Operator which connects to the internet via the mobile network.

Caching locations of SERs

Problem of SERS

What is the appropriate point between an end-user and origin server?

Are SERs viable for an e-commerce CDN?

Objective

Study of Cache in Smart Edge Router for Web-Access Accelerator

STUDY Scenarios

Small Scale

- 3–5 users
- Room or home

Medium Scale

• 10–200 users

 Cafe, restaurant, school Large Scale

• >= 500 users

 Public parks, concert hall

Viability Questions

- What is the appropriate level to place a SER cache?
- How much traffic can a SER cache reduce in the network?
- How much can a SER cache decrease the latency to access content?
- How much storage does a SER cache require?

SIMULATION

GOAL:

- Proof of concept of using a smart edge router for a particular service.
- A preliminary indicator of the appropriateness

Design & Implementation

- Python
- Topology creation
- Event-based simulation.

Topology creation

How to group IP address by subnet mask (example)

	/32	/24	/16	/8	/0
IP	255.255.255.255	255.255.255.0	255.255.0.0	255.0.0.0	0.0.0.0
192.168.210.156	192.168.210.156	192.168.210.0	192.168.0.0	192.0.0.0	0.0.0.0
192.168.210.32	192.168.210.32	192.168.210.0	192.168.0.0	192.0.0.0	0.0.0.0
192.168.212.44	192.168.212.44	192.168.212.0	192.168.0.0	192.0.0.0	0.0.0.0
192.167.218.178	192.167.210.178	192.167.218.0	192.167.0.0	192.0.0.0	0.0.0.0
192.167.218.200	192.167.218.200	192.167.218.0	192.167.0.0	192.0.0.0	0.0.0.0
127.58.212.44	127.58.212.44	127.58.212.0	127.58.0.0	127.0.0.0	0.0.0.0

Group IP address - consider number of hosts

Event-Based Simulation

Traffic reduction in the network

```
Total traffic = \sumsize of request.
```

```
Reduced traffic = \sum size of duplicated content in the same group
```

First request \rightarrow Miss 2nd, 3rd, ... \rightarrow Hit = Traffic can be reduced here

Experimental Setup - Dataset

Public data	Internal data		
Harvard Dataset* - HTTP	НТТР	HTTPS	
 Online Shopping Store - Web Server Logs 5-day log 	 CDN log of Access of Image content Sample 	Rakuten Ichiba server	

Simulation Results

- What is the appropriate level to place a SER cache?
- How much traffic can a SER cache reduce in the network?
- How much can a SER cache decrease the latency to access content?
- How much storage does a SER cache require?

What is the Appropriate (Subnet) Level for the SER?

<u>R</u>

Reasonably good caching in /24

How Much Latency Decrease can the SER Provide?

HTTP

HTTPS

How Much Latency Decrease can the SER Provide?

How Much Storage is Necessary for a SER?

100 MB is enough

What is the Effect of Cache Replacement Policies on the SER?

Total response time (sec)

Summary – Simulation results

- What is the appropriate level to place a SER cache?
 - /24 level fits \rightarrow but a small group of users
- How much traffic can a SER cache reduce in the network?
 - 7% ~ 39% from client access, good on overall
- How much can a SER cache decrease the latency to access content?
 - On average, ~0.3 ms \rightarrow not significant improvement
- How much storage does a SER cache require?
 - 100 MB is enough for caching one-day contents

The SER is not a viable option in term of user response times or network load reduction.

Conclusion and Future work

- Work in Progress Study
- Simulation has a limitation
- Create a real edge router platform for caching
- Plan to verify other services and investigate autonomous operation of CDN.

SMART EDGE ROUTER PLATFORM

Rakuten Mobile Innovation Studio

https://corp.mobile.rakuten.co.jp/nw-lab/

rmi-research-contact@mail.rakuten.com

© 2020 Rakuten Mobile Innovation Studio