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Abstract—The Insense VM is a specialised Java virtual ma-
chine for running Insense programs on wireless sensor nodes. The
VM runs on top of InceOS, a purpose-built operating system.
A split VM architecture is used, in which Insense programs
are compiled to Java classes, then linked and compacted on a
more powerful machine into a form suitable for execution by
the VM. Measurements demonstrate that the virtual machine
achieves good performance and memory usage for realistic
Insense programs.

I. INTRODUCTION

The Insense language [3] has been developed to ease the
programming of wireless sensor networks. Insense uses a
component-based model of concurrency, where components
are strictly encapsulated and communicate through message
passing. Insense is supported by a purpose-built operating
system, InceOS [11], which runs on the Tmote Sky/TelosB
platform. This paper presents the Insense VM, a specialised
Java virtual machine which runs on top of InceOS and di-
rectly supports the features of Insense. Insense programs are
compiled to Java bytecode, then linked and compacted into a
much smaller form prior to installation on a sensor node.

Sensor nodes have extremely limited resources; each node
typically has a few kilobytes of RAM, and a processor running
at several megahertz. Using a virtual machine introduces a
performance and memory overhead over native execution. In
a highly constrained environment, it is essential that these
overheads do not compromise the usefulness of the system.
We demonstrate that the Insense VM does not suffer from this
problem, and is capable of running realistic and useful Insense
programs.

II. RELATED WORK

A. Insense

Widely-used operating systems for wireless sensor net-
works impose unusual programming models to compensate
for the limited resources available. For example, TinyOS [12]
uses the nesC language, with an event-driven ‘split-phase’
programming model. In nesC, all operations are non-blocking,
and programs use many callbacks which can make the flow
of control difficult to follow. Contiki [7] programs are writ-
ten in C, but use macros and continuations to simulate a
traditional threaded environment on top of an event-driven
core. Programmers using these systems must have extensive
knowledge of low-level and embedded programming. Domain
experts wishing to use wireless sensor networks in their own
fields – often described as the intended users of these systems
– are unlikely to have this knowledge.

The Insense language is designed to overcome this prob-
lem [3], [9], [13]. Insense is a component-based language. A
program consists of several components. A component is es-
sentially a thread which executes a behaviour function repeat-
edly, and has private state. Components can only communicate
by passing messages over strongly-typed channels, which use
a blocking ‘rendezvous’ model. Senders and receivers block
on a channel until both are present, at which point the mes-
sage is passed and both components are unblocked. Channels
prevent many common synchronisation problems encountered
in shared-memory concurrent programming. Execution begins
in a primordial main function, which creates and connects the
initial set of components. Insense uses garbage collection to
reclaim unused memory. The Insense standard library defines
functions and components for accessing sensors, the radio, and
other hardware present on a sensor node. These components
use channels in the same way as user-defined components.

Fig. 1 shows an example Insense program. The Sender
component sends integers over a channel to the Receiver
component. Channels consist of two half channels connected
together. In channels are connected to out channels of the same
type.

B. InceOS

The first Insense implementation compiled programs into
C, targeting Contiki [9]. However, the conflicting designs of
Contiki and Insense led to high overheads [10]. To overcome
this, the InceOS operating system was developed, which sup-
ports the semantics of Insense programs directly [11].

InceOS is a preemptive multitasking operating system
where the unit of execution is the Insense component. Com-
munication over channels is supported through system calls.
The blocking semantics of channels are used to implement
a lightweight round-robin scheduler. Garbage collection is
provided through a reference counting system. The OS is
implemented in C, and includes the Insense standard library
functions and components. Currently, InceOS runs on the
Tmote Sky/TelosB platform, with a Texas Instruments MSP430
microcontroller, and in the Cooja simulator provided by Con-
tiki.

The second Insense implementation compiled programs
into C, targeting InceOS. The C code and the OS are linked
into a single monolithic binary image. However, this approach
is inflexible and does not support dynamic reprogramming.
This motivated the development of the Insense VM.

C. Virtual Machines for Constrained Devices

Virtual machines offer improved flexibility and robustness
over native execution. Targeting a VM means that software can



type ISender is interface(out integer output)
type IReceiver is interface(in integer input)

component Sender presents ISender {
number = 0;

constructor() {}

behaviour {
send number on output;
number := number + 1;

}
}

component Receiver presents IReceiver {
constructor() {}

behaviour {
receive number from input;
printString("Got value ");
printInt(number);
printString("\n");

}
}

// Primordial main
s = new Sender();
r = new Receiver();
connect r.input to s.output;

Fig. 1. An example Insense program.

run on a variety of machines without recompilation (assuming
a VM is available on each platform). A VM specification
can be implemented by different execution methods, such as
interpretation and JIT compilation, with characteristics suited
to different situations. VMs improve robustness by preventing
undefined behaviour, and detecting runtime errors which would
go undetected in native code. This is particularly important for
sensor nodes, which have no hardware memory protection. All
code runs in a single address space and privilege level, so a
misbehaving native program can corrupt the entire system. A
VM can detect and handle such errors safely.

Specific to sensor nodes, VMs can ease over-the-air dy-
namic reprogramming, where new code is sent over the radio
and installed on a node after deployment. Dynamic reprogram-
ming has been done with native programs [7], but a VM has
the advantage of denser code, which is less expensive to send
over the radio. It is also easier to link new code into a program
running in a VM than it is to update native code at runtime.

Several VMs have been developed for use on wireless
sensor nodes. Many have used the Java bytecode instruction
set, which is well supported by existing tools and libraries,
and is well understood. Examining these VMs reveals certain
trends and characteristics.

The full Java virtual machine (JVM) specification [15]
is too complex to support on embedded devices. The Java
Platform, Micro Edition (Java ME) is designed for smaller
devices than the full specification, and offers a complete
VM with a reduced standard library. However, even these
implementations are too large – on the order of hundreds
of kilobytes – for use on sensor nodes. JVMs designed for
sensor nodes deliberately exclude parts of the specification
in order to reduce size, e.g. threads, reflection [6], floating-

point arithmetic, exceptions, garbage collection [14], and user-
defined classes [8]. Optimisation is for space rather than
speed [4]. All use a much reduced standard library.

Java class files are usually large, and only a small fraction
of this is bytecode (see Section IV). The rest is metadata
used for dynamic linking. Because memory on sensor nodes
is limited, and data transmission is costly, many VMs use a
split VM architecture [18], [4], [2], where class files are linked
on a desktop machine into a much smaller and denser format.
The VM running on the node executes this format rather than
the original class files.

Of note is Darjeeling [4], an open source VM for the
MSP430 and other architectures that is similar to the Insense
VM. However, the goals of Darjeeling are different; users are
expected to program in Java. The standard thread-based Java
concurrency mechanisms are supported, as is a small subset
of the Java standard library. Darjeeling runs on top of TinyOS
and Contiki, among others.

The Insense VM, in contrast, is intended to support In-
sense and to integrate with InceOS. The Insense concurrency
model is supported instead of threads and synchronisation, and
InceOS provides its own standard library.

III. THE INSENSE VM

The Insense VM is a specialised Java virtual machine
designed to run Insense programs on MSP430-based sensor
nodes, on top of InceOS. It is a 16-bit, interpreted, stack-based
VM. It uses the ‘split VM’ approach to run Java bytecode
programs on devices with as little as 10 kB of RAM and tens
of kilobytes of program memory. This section discusses the
key features of the VM.

A. JVM Feature Set

The Insense VM does not implement the whole JVM
specification [15]. Many of the features of a standard JVM
are unnecessary for Insense, and would increase the memory
footprint of the VM and interpreted programs by an unaccept-
able amount. Features not implemented include:

• Interfaces – Insense interfaces add fields (channels),
not methods, to a component. Insense is not object-
oriented, so does not need interfaces in the Java sense.
The VM does support inheritance of classes, which is
used internally but not exposed in the language.

• Synchronisation – the Insense concurrency model re-
places traditional Java synchronisation.

• Data types – several primitive data types are unsup-
ported (see Section III-C).

• The Java standard library – Insense defines its own
standard library. Only the minimum of classes from
the java.lang package are supported (Object,
String, and the primitive wrapper classes), with as
few methods as possible.

• Reflection – neither the APIs nor the runtime type
information for reflection are supported. The only type
information associated with an object at runtime is its
class, which is used by the garbage collector.



Fig. 2. Compiling and executing an Insense program. The ‘split VM’ architecture is shown by the separation between PC and sensor node.

Bytecode instructions used only by these features are not
implemented. Some features, such as multidimensional arrays
and exceptions, are supported in a restricted form.

B. Compilation and Linking

The Insense VM uses a split VM model, similar to the
VMs discussed in Section II.

A traditional JVM uses ‘lazy loading’ of class files. Classes
are compiled independently, and all references to other classes
are symbolic. The JVM loads a class file when it is first refer-
enced, and resolves all symbolic references before continuing
execution. However, this is a demanding process, and class
files are often larger than the whole main memory of a sensor
node.

The essence of the split VM approach is to resolve all
references offline, on a more powerful machine, and link the
class files into a single file which the VM can execute. This
places less demand on the sensor node. The linked file can be
smaller than the original class files by an order of magnitude
or more. The techniques used in the linker to achieve these
reductions are discussed in Section IV.

The split VM system used by the Insense VM has five
steps, shown in the ‘program’ section of Fig. 2.

1) Insense code is compiled to Java source code. Each
component is a Java class.

2) The Java source is compiled to Java bytecode using
the javac compiler.

3) The linker is run twice; first to link the standard
library, and second to link the bytecode program
against the standard library.

4) The VM is compiled using MSPGCC. The output of
the linker is statically compiled into the C program
at this stage, and stored in program memory1.

5) The resulting binary is installed on a mote or run in
simulation.

1Dynamic over-the-air reprogramming has not been implemented yet,
and is discussed as future work in Section VI. With support for dynamic
reprogramming, only the standard library would be compiled into the VM.

The linker produces a second output: a symbolic infor-
mation file which allows other programs to link against the
corresponding binary. This is used to separate the standard
library from programs. The standard library contains classes
which programs rely on, such as Object and Integer,
native method declarations, and wrapper classes for native
components.

C. Memory Model

The Insense VM is stack-based, as in a standard JVM.
An alternative register-based model was rejected because of
memory limitations. Stack-based bytecode tends to be slower
but smaller than equivalent register-based code [17], and the
scarce memory on sensor nodes encourages optimisation for
space rather than speed.

1) Slot Size: To support the stack-based model, every call
stack frame has an operand stack consisting of fixed-size slots.
Local variables are stored in separate slots of the same size.
The JVM specification requires slots to be 32 bits, to match
the word size of common desktop CPUs. Values of all data
types occupy one slot, except for long and double, which
occupy two.

However, the specification defines instructions in terms of
the number of slots they operate on, without reference to the
size of the slots. This means the slot size can be changed
without modifying the bytecode, as long as each data type
still occupies the same number of slots as before.

The Insense VM uses a 16-bit slot size, to match the
native word size of the MSP430 and the largest integer type in
Insense. This allows a convenient mapping between Insense,
Java, and MSPGCC data types, as shown in Table I, while
saving memory over the standard 32-bit slots. The integral
types all use one slot. MSPGCC’s 32-bit float represents
Java’s double, which occupies two slots. The VM does not
support Java’s long, because Insense does not have a 32-bit
integer type. As in a standard JVM, byte values occupy a
whole slot.

Changing the slot size changes the range of values a type
can have. However, the VM is intended only to run Insense



TABLE I. MAPPING FROM INSENSE TO JAVA TO MSPGCC DATA TYPES.

Insense type Java type Size (slots) MSPGCC type Size (bits)

integer, unsigned, boolean int 1 int 16
byte byte 1 char 8
real double 2 float 32

reference reference 1 void* 16

programs, not existing Java programs which might depend on
the larger range available in a standard JVM.

2) Stack Frames: A new call stack frame is allocated on
the heap when a method is called, rather than being pre-
allocated at component creation. A minimal stack frame with
no slots and no local variables occupies 16 bytes of RAM.
Each additional slot or variable requires two bytes. The number
of slots and variables used by a method is known at link
time, so the whole frame can be allocated as a single unit.
Memory must be allocated in advance for a component’s C
stack, which is used to run the interpreter and native methods.
This is typically on the order of several hundred bytes per
component.

3) Objects: All objects are allocated on the heap. A class
definition includes a reference to the class’s superclass (as in
standard Java, all classes descend ultimately from Object),
the size of its fields, and a virtual method table.

When an object is instantiated, space is allocated for its
fields. Unlike stack slots, fields can differ in size, and are
packed in memory. The size of a field must therefore be known
when accessing it. A standard JVM keeps this information
in the constant pool, but the split VM approach means that
the Insense VM does not have a constant pool. Instead,
new type-specific versions of the getfield and putfield
instructions have been introduced for the different field sizes.
The instruction to use in each case is chosen at link time.

Some classes are treated specially. String contains a
pointer to a native string. Arrays contain a pointer to a
native array, as well as the size, dimensions, and element
class of the array. The class of an array itself is the special
placeholder ‘array’ class, and variants of the instanceof
and checkcast instructions have been introduced to test the
element type and dimensionality of arrays. Additional space is
allocated for these classes by the VM.

4) Static Fields: Insense does not support static fields be-
cause they could break the strict encapsulation of components.
Hence, they are not allowed in bytecode programs. However,
they are useful in the standard library as global references to
system components. Because the standard library is designed
to be compiled into the VM image, space for static fields is
allocated at compile time. As with instance fields, static fields
are packed in memory, and new versions of the getstatic
and putstatic instructions are used to access fields of
different sizes.

5) Garbage Collection: The VM uses the reference count-
ing garbage collector provided by InceOS. All Java objects are
reference counted, and bytecode instructions which manipulate
objects increment and decrement the reference counts appro-
priately. A bitmap in each stack frame keeps track of which
slots and variables contain objects, so that their reference
counts can be decremented when a method returns. Fields

in classes are handled in a similar way, except that this
information is known at link time, and is stored directly in
the linked binary.

Like any simple reference counting system, the InceOS
collector cannot collect cycles in the object graph. However,
Insense prevents the creation of cycles by enforcing certain
rules. Insense structures cannot reference other structures, and
all complex data types are duplicated when sent over channels.

Potential enhancements to the garbage collector are pro-
posed as future work in Section VI.

D. Support for Insense Features

Previous sections have examined how the VM supports the
Java execution model. This section discusses features specific
to Insense.

1) Components: Each component in an Insense program is
compiled into a Java class extending the standard Component
class. Channels are stored as fields. A component’s construc-
tors run in the context of the creating component, and call
the native start method to begin execution of the new
component as an independent entity.

Each Java component is run by an instance of the native
‘interpreter’ component, which is written in C and is the
central part of the VM. The Java primordial main is interpreted
from InceOS’s own primordial main, which also performs
system initialisation. As components are the basic schedulable
entities in InceOS, the scheduler ensures that the execution of
interpreted components is interleaved with each other and with
system components.

2) Channels: The standard library provides generic
ChannelIn and ChannelOut classes which are instantiated
for each channel in a component. Using generics means that
the javac compiler type-checks all channel operations at
compile time, so the VM does not have to do any type-
checking at runtime.

Channels are one of the classes treated specially by the
allocator. A Java channel wraps a native channel, and inter-
preted programs use native methods to access the underlying
functionality. Data is passed opaquely from sender to receiver,
so the size of the type being passed must be specified when
a channel is created. An advantage of generics in this respect
is that all Java channels simply pass a pointer, so the VM can
create channels without any type information being available
at runtime. A drawback to using generics is that primitives
must be ‘boxed’ and ‘unboxed’ before and after being passed
over a channel, which can be time-consuming if a channel is
used frequently.



TABLE II. SIZES OF INSENSE PROGRAMS AS CLASS FILES AND LINKED BINARIES.

Program Class files (B) Linked binary (B) Linked binary (% of class files)

Standard library (basic) 19500 436 2.2%
Standard library (full) 19500 770 3.9%

Arithmetic 2032 172 8.5%
Blink 2977 321 10.8%

Integer channel 3376 273 8.1%
Radio sense to LEDs 4515 374 8.3%

3D array channel 3961 533 13.5%
Sense 3238 292 9.0%

Data Logger 16272 2873 17.7%
Base Station 8796 2030 23.1%

E. Interaction with Native Code

Most of the Insense standard library is implemented in C
and accessed through Java native methods. Java components
which wrap system components also need special treatment.

1) Native Methods: Methods in the standard library can
be declared as native. In a standard JVM, native methods are
called using the same instructions as normal methods, and
the constant pool is used to resolve and load the necessary
native code. Because the Insense VM does not have a constant
pool, a new invokenative instruction has been intro-
duced specifically for calling native methods. This instruction
behaves like invokestatic, except that its argument is
treated as identifying a native method rather than an inter-
preted method. The structure of most native methods is to
extract native data from the arguments, to make a system call,
and to convert the result back into Java form. The existing
invocation instructions invokestatic, invokespecial,
and invokevirtual are only used to invoke interpreted
methods.

This approach means that native methods must be static.
There is currently no support for virtual invocation of native
methods, but this has not been found necessary in implement-
ing Insense programs.

2) Native Components: The Insense standard library de-
fines components for accessing the sensors, timers, radio,
and other hardware. InceOS implements these components in
C. Interpreted code accesses these components through the
channel mechanism, as normal, using Java channels which
wrap the components’ native channels. Because Java channels
expect to send and receive references to Java objects, but native
channels use a variety of C data types, conversion between
types is performed within the channel mechanism for any
transfer between the two kinds of channels.

IV. BYTECODE COMPACTION

This section examines the techniques used in the linker
to reduce the size of class files. These are examples of
compaction, rather than the compression used in standard JAR
files. Decompression is an expensive task to perform on a
sensor node, whereas compaction simply discards unnecessary
parts of the data, leaving the rest immediately available for use.

Table II presents the sizes of the class files and linked
binaries for the standard library and various programs, gen-
erated using the techniques discussed below. Typically, linked
binaries for programs are around a tenth to a quarter of the
size of the corresponding class files.

TABLE III. AVERAGE PERCENTAGE COMPOSITION OF CLASS FILES.
‘USED’ AND ‘UNUSED’ INDICATE WHETHER INFORMATION IS PRESENT IN

THE LINKED BINARY.

Data Standard library Programs
(26 class files) (37 class files)

Constant pool 68.1% 64.0%
Class metadata used 0.3% 0.2%

Class metadata unused 5.9% 4.1%
Field metadata used 0.3% 0.2%

Field metadata unused 10.9% 2.5%
Method metadata used 1.9% 2.1%

Bytecode 2.4% 13.0%
Method metadata unused 10.3% 13.9%

Method total 14.6% 29.1%

Total used 4.8% 15.4%
Total unused 95.2% 84.6%

A. Composition of Class Files

Java class files contain member definitions (fields and
methods), metadata, and constant pools. Past analyses of Java
programs show that, on average, class files can be as little
as 33% method definitions [1], and only 20% bytecode [16].
However, this may not be representative of Insense programs,
and in particular the standard library, which contains mainly
class and native method definitions.

The class files from the standard library and various Insense
programs have been analysed to find how much of their data
can be discarded. The results are shown in Table III. Most of
the unused data is related to linking, and is unnecessary after
being used by the linker. The rest is mainly metadata related to
Java features unsupported by the VM, or which is encoded in
the VM’s new instructions (e.g. the size of fields, and whether
methods are native). Much of the unused data is retained in
the program’s symbolic information file, which is substantially
larger than the linked binary, but is only used by the linker and
never installed on a sensor node.

B. Optimisations

The linker performs various optimisations on the data
which is kept, to further reduce the linked binary’s size.

1) ‘Static Only’ Classes: In Java, all methods and fields
must be part of a class; there is no such thing as a ‘top-level
method’ or a global variable. However, some classes contain
only static methods and static fields, are never instantiated,
never extended, and never used as the type of a variable.
Because all symbolic references are resolved in the linker, the



TABLE IV. SIZE OF THE DEFAULT VM CONFIGURATION. RAM USAGE
REFERS TO THE STATICALLY ALLOCATED ‘DATA’ AND ‘BSS’ SECTIONS.

Interpreter Interpreter Standard library
(bytes in ROM) (bytes in RAM) (bytes in ROM)

27980 471 436

linked binary does not need to include a class definition for
these classes at all; only the methods and fields themselves are
included. A class suitable for this treatment is marked with the
custom ‘static only’ annotation, which is detected by the linker.
All wrapper classes for native components are marked as static
only, giving significant space savings.

2) Empty Methods: Java object construction takes place in
two stages. The new instruction allocates the memory required
for the object, and then the constructor is called. All Java
classes are required to have a constructor. The javac com-
piler generates default constructors where necessary, which do
nothing but call the superclass’s constructor, to ensure this rule
is satisfied. This leads to long chains of calls to methods that
do no useful work at all.

The linker detects these methods and removes them from
the linked binary. All calls to these methods are also removed.
This continues iteratively until all constructors and static
methods which do nothing, transitively, have been removed.
Some modification of the bytecode around the removed call
sites is necessary to ensure correct execution. In particular,
arguments to the method are pushed to the operand stack
before a call, and must be disposed of now that the call
no longer happens. If the argument was pushed immediately
before the call, the pushing instruction is removed; otherwise,
an appropriate number of pop instructions are inserted.

Virtual methods are not removed even if they do nothing,
so that virtual calls continue to work as expected.

3) Native Methods: The invokenative instruction
refers to native methods by IDs assigned by the linker, made
available to the VM through a C header file. Hence no
information about native methods is stored in the linked binary
at all.

C. Conditional Compilation

InceOS provides many standard library functions and com-
ponents, only some of which might be used by a given
program. The original Insense to C compiler (see Section II)
relied on the C linker to remove unreferenced functions. The
VM, however, must reference everything, which uses most of
the Tmote Sky’s 48 kB program memory and leaves little space
for bytecode.

This is overcome using conditional compilation in the
linker and the VM. Only the core of the system is enabled
by default, and the user enables any additional components
required. Because the standard Java toolchain does not support
conditional compilation, a custom ‘ifdef’ annotation has been
introduced which is used by the linker to mimic the behaviour
of the C preprocessor directive. The VM build system ensures
that a matching set of native components is compiled. Any
interpreted program which only uses these components can
then be run without having to modify the VM image or the
standard library installed on a mote.
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Fig. 3. Dynamic memory usage of the RadioSenseToLeds application.

Table IV shows the static memory consumption of the
interpreter and standard library in the default configuration.
Table V shows the additional memory required to support
each of the optional components. (Dynamic memory usage
of complete programs is examined in Section V.)

V. EVALUATION

A. Memory Usage

The static memory usage of Insense programs has been ex-
amined in Section IV. Insense programs also allocate memory
dynamically from the heap. Because the garbage collector uses
reference counting, memory is freed as soon as it is no longer
referenced.

1) RadioSenseToLeds: In Fig. 3, the ‘VM’ plot shows the
dynamic memory usage of the RadioSenseToLeds application
over time, running on the Insense VM. This program takes
readings from one of the on-board sensors and broadcasts them
over the radio. A second component receives messages from
other nodes and displays the bottom three bits of the reading on
the LEDs. Time is measured in the number of allocations and
deallocations since the end of the OS initialisation sequence.

Memory tracking starts at the beginning of the primordial
main, after system initialisation. Most of the memory allocated
before this is used for the C call stacks of the system
components and the primordial main. The large increases at
around times 50 and 60 are the creation of the sender and
receiver components (again, most of the memory is used for
the C stacks). The large drop at 70 is the termination of the
primordial main. Periodic usage is observed after about 100,
as the sender’s behaviour is executed repeatedly.

The ‘Native’ plot shows the behaviour of the same pro-
gram, compiled using the original Insense to C compiler. The
memory usage is considerably lower, mainly because the stack
size needed for each component is calculated and set in the C
code. This is in contrast to the VM, where the stack size of
each component must be large enough to run the interpreter,
regardless of which Insense program is being run. However, it
should be noted that there is still more than enough memory
available to run the interpreted program.



TABLE V. ADDITIONAL MEMORY REQUIREMENTS FOR OPTIONAL COMPONENTS. RAM USAGE REFERS TO THE STATICALLY ALLOCATED ‘DATA’ AND
‘BSS’ SECTIONS.

Component Interpreter Interpreter Standard library
(bytes in ROM) (bytes in RAM) (bytes in ROM)

Basic sensors 1810 27 0
Additional sensor functions 362 0 0

Additional sensor component 1458 31 0
Acceleration X-axis 1309 13 47
Acceleration Y-axis 1301 11 47

Pressure 1307 13 47
Tilt X-axis 1301 11 47
Tilt Y-axis 1301 11 47

Button 298 15 0
Exceptions 305 0 45

Timer 605 4 69
Radio 3444 100 64

Runtime error checking 983 2 45
Serial comms 522 93 0

Storage 2739 31 109
Printf 2376 28 0

Fourier 1064 200 0
Diagnostics 1946 12 0
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Fig. 4. External fragmentation: number of free blocks in the interpreted
RadioSenseToLeds application.

As memory is allocated and freed, the region of memory
used by the allocator becomes fragmented. Fig. 4 shows the
total number of free blocks, and Fig. 5 shows the size of
the largest free block, in the interpreted RadioSenseToLeds
program over the same time period as Fig. 3. Although
memory is being allocated and freed throughout this time, the
level of fragmentation is bounded, and does not increase to the
point where it becomes problematic.

Table VI compares the total static memory requirements for
the interpreted and native versions of RadioSenseToLeds. For
the interpreted version, ROM usage includes the linked stan-
dard library, the bytecode program, and all C code. Again, the
native version is considerably smaller, but there is still enough
memory available for the VM and interpreted application.

2) DataLogger: Fig. 6 shows the dynamic memory usage
of a more complex interpreted program, DataLogger. This
program reads data from the sensors and stores it in flash.
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TABLE VI. STATICALLY ALLOCATED MEMORY FOR NATIVE AND
INTERPRETED RadioSenseToLeds.

Type RAM (bytes) ROM (bytes)

Interpreted 632 38982
Native 590 22440

Later, it can send the stored data over the radio to a base
station running on another node. A user controls the program
by sending commands over a serial connection to the base
station, which parses the commands and sends the appropriate
radio messages to the data logger. This program uses many
of the optional components provided by the standard library,
including the acceleration and tilt sensors, the radio, the storage
module, timers, and runtime error checking.

Between times 500 and 3500, the program is reading from
the sensors. The large spikes during this time are buffers
filled with data being passed to the flash component; these are
arrays which are copied when they are sent over a channel, in
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Fig. 6. Dynamic memory usage of the DataLogger application.

TABLE VII. STATICALLY ALLOCATED MEMORY FOR DataLogger AND
THE BASE STATION.

Program RAM (bytes) ROM (bytes)

DataLogger 636 42866
Base Station 724 41566

keeping with the strict encapsulation of components. Between
about 4000 and 6000, data is being streamed from flash
to the radio. Table VII shows the static memory usage for
DataLogger and the base station. Despite the complexity of
the application, there is still more than 2 kB of RAM and 6 kB
of program memory free. This demonstrates that the Insense
VM is capable of running a realistic and potentially useful
application.

B. Performance

1) Instructions per Second: One measure of the VM’s
performance is the number of bytecode instructions executed
per second. The VM was instrumented to capture this data, and
several programs were run. These measurements were taken on
a Tmote Sky sensor node running at 4 MHz. Table VIII shows
the results.

Different bytecode instructions take different times to ex-
ecute. The number of instructions a program executes per
second depends on which instructions it uses. RadioSense-
ToLeds is the same application used in Section V-A1. It is
largely I/O bound, and spends most of the time communicating
with the sensors and the radio. Fourier repeatedly performs a
fast Fourier transform on an array of integers, and consists
mainly of integer arithmetic and array accesses. Arithmetic
simply performs integer arithmetic in a loop; this is perhaps
unrealistic, but it demonstrates the VM’s highest speed.

The table also shows the effect of runtime error checking on
instruction throughput. With runtime error checking enabled,
the VM detects various problems as they occur, and throws an
appropriate exception. Checks include testing for null pointers,
testing for out-of-bounds array accesses, and reporting out-
of-memory conditions. If exceptions are not caught by the
interpreted program, the offending component is terminated.
With runtime checks disabled, execution continues after an
error with undefined behaviour.

TABLE VIII. INSTRUCTIONS PER SECOND.

Program Runtime No runtime
checks checks

RadioSenseToLeds 128 132
Fourier 29051 29176

Arithmetic 42894 42871

TABLE IX. RUNNING TIMES OF INTERPRETED AND NATIVE
PROGRAMS.

Program Time (s) Standard
Deviation (s)

RadioSenseToLeds (VM) 0.233 0.001
RadioSenseToLeds (Native) 0.230 0.001

Fourier (VM) 2.420 0.001
Fourier (Native) 0.161 0.000

As shown in the table, runtime error checking does not have
a significant performance overhead. Thus the only reason to
disable error checking is if the memory saved by doing so is
needed for bytecode.

2) Execution Time: Counting instructions per second is an
artificial measure of performance. A more important measure
is the time taken for a program to do something useful; it is
unimportant how many instructions are executed in the process.
Table IX shows the running times for several programs, both
as interpreted programs running on the VM, and as native
programs. The figures are the average running times of one
hundred executions of each program’s behaviour. For each of
the interpreted programs, runtime error checking is enabled.

For a computationally intensive task such as the fast Fourier
transform, native code is more than an order of magnitude
faster than interpreted code. In contrast, for an I/O bound pro-
gram such as RadioSenseToLeds, the overhead of interpretation
is negligible.

A sensor node VM would be expected to run mainly I/O
bound applications. It is unlikely that computationally inten-
sive tasks, such as the fast Fourier transform, would be written
in interpreted code. In fact, the C implementation used by the
native Fourier example is available to interpreted programs as a
native method in the standard library. Similar computationally
intensive tasks, where the overhead of interpretation is large,
could be implemented in C and exposed to the high-level
interpreted program in the same way. This demonstrates that
the VM is fast enough for its intended use.

VI. FUTURE WORK

Although the Insense VM can execute Insense programs
effectively, it could be improved in several ways.

A. Dynamic Reprogramming

As described in Section II, one of the advantages of VMs
over native code is that dynamic over-the-air reprogramming
can be supported more easily. Bytecode programs are usu-
ally smaller and less expensive to send over the radio than
equivalent native code. Although dynamic reprogramming has
not been implemented yet, the Insense VM has been designed
with it in mind. The split between the standard library and
user code means that programs are already in a format which



could be used for dynamic reprogramming, with appropriate
support from the system.

Several changes are required to support dynamic repro-
gramming in the VM:

• Bytecode programs are stored in program memory,
which is flash that can only be erased and rewritten
in pages. The program would be located at a known
page-aligned location (rather than contiguous with the
end of the standard library, as at present), so that it
could be erased and replaced.

• Additional native code would be required to send
and receive bytecode programs over the radio, to
buffer them until fully received, and to handle the
replacement process.

• The semantics of unloading a program would have
to be defined and implemented: when code is erased,
what happens to instances of classes defined in that
code?

Support for dynamic reprogramming would also be added
to the language. This could either be through native methods,
or through integration with the channel mechanism, so that
dynamic reprogramming becomes a case of sending code over
a channel to another node. Whichever option is chosen, the
distinction must be made between weak mobility, where only
the code is sent to another node, and strong mobility, where
both code and state are sent – in effect, migrating a running
component between nodes.

B. Compiler

As described in Section III, Insense programs are currently
compiled to Java, and then to bytecode using javac. There
would be several advantages in compiling Insense directly to
bytecode:

• Reduction in code size – some of the classes and
methods in the standard library exist only for com-
patibility with the code generated by javac. Certain
methods in the ‘primitive classes’ such as Integer,
and classes to support exceptions, are not strictly nec-
essary, but are required to link with classes generated
by javac.

• Optimisation of bytecode – the code generated by
javac might not represent Insense idioms in the most
efficient way. Optimising at the compilation stage,
with knowledge of the changes to the instruction set
made by the VM, might be easier than attempting to
optimise javac-generated bytecode in the linker.

• Variable and stack usage – the Insense VM uses
bitmaps to record which local variables and stack
slots contain objects, so that garbage collection works
correctly. These must be maintained at runtime be-
cause javac-generated code reuses slots for different
types throughout the lifetime of a method call. In
Darjeeling, in contrast, a frame has separate variables
and stacks for objects and primitives, so that the
information needed for garbage collection is available
statically [5]. This is possible because of the extensive

bytecode rewriting Darjeeling performs during the
linking stage. A similar process could be adopted here.

C. Garbage Collection

The Insense VM currently uses a reference counting
garbage collector, as described in Section III. As with all
simple reference counting systems, it cannot collect cycles in
the object graph. The Insense language prevents the occurrence
of cycles. However, if the VM was to be used for hand-written
Java or other languages, it might be necessary for the garbage
collector to handle cycles correctly.

Either the reference counting system could be replaced by
a tracing collector, or the current system could incorporate
tracing as a ‘backup’ collector, used as a last attempt to free
memory when an allocation fails. Alternatively, cycle detection
could be added to the existing reference counter.

However, each of these requires additional memory. An
advantage of the current system is that memory is reclaimed
as soon as possible, leaving space for other components to use.
Since memory is such a scarce resource, this is desirable, and
avoids the long pauses needed for a tracing collector. Thus the
best way to add cycle handling might be as a conditionally
compiled option, with the current system as the default.

D. Linker File Format

The linked binary file format was designed to be as small
as possible, but this comes at the expense of flexibility.
The current format does not support relocatable code, as all
references are absolute. In a dynamic reprogramming system,
when multiple bytecode programs are in use, either each must
have a particular space in memory reserved for it (which could
be wasteful), or the programs must be mutually exclusive.
Reprogramming at the granularity of individual classes would
be difficult, if not impossible.

To overcome this, ideas could be adopted from the Darjeel-
ing equivalent (referred to as an infusion) [4]. Rather than split-
ting programs into a standard library and user code, Darjeeling
allows composition from an arbitrary number of modules (one
of which is the standard library). References between modules
are resolved using a symbol table, where references identify
a module and symbol number within that module, rather than
being absolute offsets. This allows modules to be relocatable.

Relocatable modules require additional memory to store the
various tables, and additional information in the file format to
allow for the tables to be constructed. Any modification to the
Insense VM’s file format would therefore be a tradeoff between
the flexibility of a Darjeeling-like system, and the simplicity
and small size of the current system.

E. Further Evaluation

The evaluations carried out so far have focused on memory
usage and performance. Another important characteristic of
sensor node applications is power consumption. Further mea-
surements could be taken to compare the Insense VM’s power
consumption with other systems, and to reduce it if necessary.



VII. CONCLUSIONS

The Insense VM is a specialised JVM for running Insense
programs on sensor nodes. Insense programs are compiled to
Java, and then to bytecode using the standard Java toolchain.
Using a split VM architecture, the classes are linked together
on a more powerful machine, into a single binary which the
VM can execute. This can be smaller than the original class
files by an order of magnitude or more. The VM uses native
methods to provide access to the underlying functionality of
InceOS.

This work has aimed to demonstrate that a virtual machine
is a viable and useful way to execute Insense programs, and
that the JVM architecture, in particular, can be adapted to
the needs of highly constrained devices. Measurements have
shown that the VM fits within the memory limits of a sensor
node, and that the performance overhead of interpretation is
negligible for realistic wireless sensor network programs. Thus
the benefits of a virtual machine – flexibility, portability, ro-
bustness, and the potential for easy over-the-air reprogramming
– can be gained without compromising the usefulness of the
language.
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