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FedAdapt: Adaptive Offloading for IoT Devices in
Federated Learning

Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor Spence, and Blesson Varghese

Abstract—Applying Federated Learning (FL) on Internet-of-
Things devices is necessitated by the large volumes of data
they produce and growing concerns of data privacy. However,
there are three challenges that need to be addressed to make
FL efficient: (i) execution on devices with limited computational
capabilities, (ii) accounting for stragglers due to computational
heterogeneity of devices, and (iii) adaptation to the changing
network bandwidths. This paper presents FedAdapt, an adaptive
offloading FL framework to mitigate the aforementioned chal-
lenges. FedAdapt accelerates local training in computationally
constrained devices by leveraging layer offloading of deep neural
networks (DNNs) to servers. Further, FedAdapt adopts reinforce-
ment learning based optimization and clustering to adaptively
identify which layers of the DNN should be offloaded for each
individual device on to a server to tackle the challenges of
computational heterogeneity and changing network bandwidth.
Experimental studies are carried out on a lab-based testbed and
it is demonstrated that by offloading a DNN from the device to
the server FedAdapt reduces the training time of a typical IoT
device by over half compared to classic FL. The training time of
extreme stragglers and the overall training time can be reduced
by up to 57%. Furthermore, with changing network bandwidth,
FedAdapt is demonstrated to reduce the training time by up to
40% when compared to classic FL, without sacrificing accuracy.

Index Terms—Federated Learning, Internet-of-Things, Edge
Computing, Reinforcement Learning

I. INTRODUCTION

Internet of Things (IoT) devices generate large volumes of
data from user devices that are often deemed sensitive. For
example, wearable devices such as the Google Glass or Apple
watch gather sensitive data by recording the daily activities of
users [1]. This data can be analyzed using machine learning
(ML) techniques for delivering personalized services [2], [3].
Privacy preserving ML techniques are required to ensure that
sensitive data can be analyzed in a safe manner.

Federated Learning (FL) is a privacy preserving ML tech-
nique that has recently gained popularity [4]–[6]. Using this
technique, an ML model, for example, a Deep Neural Network
(DNN) is executed on several IoT devices. The model on
each device is trained without sending raw data (that may
be sensitive) from the device to a server. Instead, the server
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receives intermediate models generated by the devices that are
aggregated on the server to create a global model. Thus, an
ML model can be trained by not exposing sensitive data from
a device to an external server.

In the classic FL architecture, the computationally intensive
workload (training of the DNN) is executed on the device. A
server located at the edge of the network or on the cloud
only aggregates the weights sent from the devices, which
is relatively less computationally intensive. Aggregation is
required for updating a global model on the server that is
then sent to the devices to continue training. The devices train
independently and may be connected to the server through
various network configurations.

Classic FL is however limited in the following three ways:
(1) Impractical training times on computationally con-

strained IoT devices: The computationally intensive workload
of training used in FL is required to be executed on devices
that are relatively resource constrained when compared to large
servers or clusters that may have specialized processors for
training ML models. Thus, the time taken to train ML models
on devices can be large making FL impractical for real-world
scenarios [7]–[9]. For example, a lightweight convolutional
neural network, MobileNetV1 [10] required over 8 hours on
Raspberry Pi3 single board computers to complete one round
of training in FL [9]. Therefore, there is an immediate need
for techniques that accelerate training in FL on IoT devices.

(2) Stragglers arising from computational heterogeneity of
IoT devices can slow down other devices during training: IoT
devices connected to a server for FL may have varying com-
putational capabilities or heterogeneous architectures. Devices
that require a longer time for training, referred to as stragglers
in this article, will slow down all devices in a synchronous FL
system [11]–[13]. This is because the aggregating server will
need to wait until all devices have completed training [14].
Asynchronous FL systems have been developed to mitigate
the straggler problem. However, they affect the accuracy of
the models since all devices may not contribute equally to
training [15], [16]. Therefore, approaches that reduce the
impact of stragglers are required.

(3) Varying operational conditions can increase training
time: Operational conditions, such as the network bandwidth
between a device and the server can vary during the course of
training. This can impact the training time [11], [17]. These
need to be considered for efficient FL training and therefore
adaptive context-aware strategies that account for changing
operational conditions are needed.

The research presented in this paper aims to address the
above challenges by considering the following questions:
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• RQ1: What techniques can be adopted to accelerate FL
in an IoT environment?

• RQ2: What techniques can be adopted to minimize the
impact of computational heterogeneity of IoT devices?

• RQ3: How can these techniques adapt to changes in
network conditions?

This paper presents FedAdapt, a holistic framework that
mitigates the above challenges of accelerating FL, reducing the
impact of computational heterogeneity and adapting to varying
network bandwidth. To accelerate FL training and to address
RQ1, FedAdapt is underpinned by an offloading technique
in which the layers of a DNN model can be offloaded from
a device to a server to alleviate the computational burden of
training on the device. To address RQ2, FedAdapt incor-
porates a Reinforcement Learning (RL) strategy to automate
the identification of layers that are offloaded from a device to
the server. To address RQ3, FedAdapt further optimizes the
RL strategy to develop different offloading strategies for each
device while accounting for changing network bandwidth. A
clustering technique is used to rapidly generate the offloading
strategy.

The above are developed on a testbed comprising five
devices and a server for two DNN models, namely VGG-
5 and VGG-8 [18]. The experimental studies highlight that
FedAdapt introduces a negligible overhead (time for execut-
ing FedAdapt modules). The key results are that FedAdapt
reduces the total training time of VGG-5 by 30% while
achieving the same accuracy and convergence speed when
compared to classic FL. Additionally, FedAdapt reduces the
total training time of VGG-8 by 40% when compared to FL
without requiring further RL training.

The research contributions of this paper are:
(1) The development of an adaptive offloading technique

that generates optimal offloading strategies for devices to
reduce the impact of computational heterogeneity. The training
time on the experimental test bed was observed to reduce by
40% for each round of FL using VGG-5. This is achieved
by the first ever introduction of a variable layer-wise training
strategy to FL, which relies on offloading by using RL. To
the best of our knowledge, FedAdapt is the first work to
introduce dynamic offloading strategies into FL training.

(2) The development of FedAdapt, a holistic framework
that incorporates techniques for accelerating FL training, re-
ducing the impact of computational heterogeneity, and adapt-
ing to varying network bandwidth. FedAdapt outperforms
classic FL by reducing the training time by up to 40%.

The rest of this article is organized as follows. Section II
presents the background and related work. Section III presents
the FedAdapt framework and the problem model. Section IV
presents the training process of a reinforcement learning
agent essential to FedAdapt. Section V highlights the results
obtained from an experimental study. Section VI concludes
this paper and presents future work.

II. BACKGROUND AND RELATED WORK

Federated Learning: FL [19] was developed to train
machine learning (ML) models in a distributed manner. Each

Fig. 1: Steps in each round of FL training: Step 1 - Server
initializes the parameters of the global model and sends to each
device, Step 2 - Each device completes training on its local
dataset and sends local model to server, and Step 3 - Server
aggregates local models to generate a new global model.

round of FL comprises three key steps as shown in Figure 1.
In the first step, a global model is initialized on the server and
distributed to all devices. Each device independently trains
the ML models using data generated by the device. Typically,
one epoch of local training utilizes the entire dataset from
each device. After independently training, in the second step,
the trained models from the local devices (updated model
parameters) are sent to the server. In the third step, a new
global model is aggregated using methods such as Federated
Averaging (FedAvg) on the server [19]. In subsequent rounds
of FL training, the aggregated model is distributed to all
devices and the above steps are repeated until the training loss
converges or a time limit is exceeded. FL is scalable on each
device since local training can be carried out independently.
However, FL is known to be less efficient for heterogeneous
devices that have different computational capabilities. Thus
local training in the straggler becomes a bottleneck [8], [9].

Split Learning: SL [20] was developed to partition a
monolithic DNN into two networks, namely a device-side and
a server-side network. On the device-side, the DNN is trained
up to the layer at which the DNN is partitioned. Then the
activation feature map of the last layer on the device is sent to
the server. The server continues training until the last layer of
the DNN. After the training loss is calculated and the gradient
is updated, the respective gradients are sent to the device
so that the gradients on the device-side can be calculated
and updated. When training in SL with multiple devices, the
devices are trained in a sequential round robin fashion whereby
only one device will be connected to the server at a time. After
a given device completes training, the updated weights are
copied onto the next device to continue training. By training
with fewer layers on the device-side, computation can be
significantly reduced on the device compared to FL in which
the entire DNN is trained on the device. While SL is beneficial
for collaborative training when there are a small number of
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TABLE I: Comparison of FL, SL, SFL and FedAdapt

FL SL SFL FedAdapt
Independent (parallel) training 3 7 3 3

Limited computational resources 7 3 3 3
Heterogeneous devices 7 7 7 3

Changing network bandwidth 7 7 7 3
Optimizing offloading strategy 7 7 7 3

devices, it is inefficient for a large number of participating
devices due to sequential training across the devices.

Splitfed Learning: The synergy of FL and SL has been
explored recently to mitigate the above limitations. Splitfed
Learning (SFL) was proposed to achieve both parallel training
of FL and acceleration of device training in SL [21]. The
combination of SFL and transfer learning has been proposed
to further improve the convergence rate of large models
(e.g. ResNet56) on limited resources [22]. A local loss is
incorporated in the device side to reduce the communication
overhead [23]. However, existing SFL-based research does not
consider optimal partitioning strategies or require hardware
configuration data to manually determine the model partitions
for all devices before training. In addition, a static partition
strategy could become sub-optimal when operational condi-
tions change during training.

Computation offloading in edge computing: Computation
offloading has been widely adopted in the literature of
edge computing. Computationally expensive components of
a distributed application that need to be executed on re-
source constrained devices are offloaded to a server located
nearby thereby alleviating the computational burden on the
device [24]. Research on optimizing the offloading strategy to
maximize performance (e.g. training time) while minimizing
energy consumption has been explored [25]. However, the
application of computation offloading to machine learning
tasks on edge devices is still in the initial stages of exploration,
particularly within the context of FL training. There is research
on determining optimal offloading for inference [26], [27].
However, since FL training is computationally intensive and
requires more time than an inference query, a more adaptable
and dynamic offloading strategy that reacts to changes in
operational conditions is required.

How does FedAdapt differ from prior work? Table I
presents a comparison of FL, SL, SFL and FedAdapt. As in
FL, FedAdapt independently trains on the local device and,
as in SL, accounts for the limited computational resources on
the device. Although DNN layer offloading is also utilized
in SFL, the key differences are that FedAdapt accounts for
heterogeneous devices and are changing network bandwidth
that affect training performance not considered within classic
SFL. In addition, FedAdapt requires no prior knowledge of
the devices, but uses an automated approach based on RL to
identify the DNN partitions for each device, thus mitigating
the challenge of heterogeneity. We also note from the literature
that most FL, SL and SFL implementations are simulation-
based and do not focus on real test beds. The benefits of
FedAdapt on the other hand are demonstrated on a physical
lab-based test bed.

III. THE FEDADAPT FRAMEWORK

This section provides an overview of the FedAdapt frame-
work and the underpinning techniques. Then the problem of
distributing the DNN model in FL across the device and server
for performance efficiency is formulated.

A. Overview

FedAdapt (Figure 2) comprises four modules, namely (1)
Pre-processor, (2) Clustering Module, (3) Trained Reinforce-
ment Learning (RL) Agent, and (4) Post-processor.

After a FL round has been completed (Round t − 1), the
Pre-processor gathers observation on the state of the devices,
such as computational capabilities1 and network bandwidth
between each device and server. The training time per iteration
is normalized by the Pre-processor.

The Clustering Module groups devices with similar training
time into a single group. In other words, all devices within
a group are considered as computationally homogeneous. A
group is further defined by accounting for network bandwidth
between the device and the server. RL is employed to deter-
mine the offloading strategy for each group.

The Trained RL Agent given the group information and
observations (referred to as State) will generate an offloading
decision (referred to as Action) for each group by using a
fully-connected neural network. The training process of the
RL Agent is further discussed in Section IV.

The Post-processor makes use of the output of the Trained
RL Agent and maps the offloading decision for each group
on to the devices in the group. All devices in a group execute
the same offloading strategy. The offloading strategy indicates
which layers of the DNN model will be on each device for
the FL Round t.

FedAdapt is underpinned by three techniques. The first
technique is offloading in which the DNN model used in FL
is partitioned so that certain layers of a neural network can
be offloaded from computationally constrained devices on to
the server. The offloading approach is used to accelerate FL
training since the computational workload is transferred to
more capable resources that may be available on the server;
this addresses RQ1 posed in Section I. The performance gain
obtained by offloading will be experimentally shown in the
next section.

In the offloading approach, the layer after which the DNN
model is partitioned is referred to as the Offloading Point (OP).
The OP is identified by the RL Agent. The initial layers of the
DNN remain on the device whereas the layers after the OP
are offloaded to the server. During training, the intermediate
activation and corresponding labels and gradients of the dis-
tributed DNN are exchanged between the devices and server.
Although there are communication overheads in transferring
the activation and gradients during training, the overall FL
training time is reduced due to the gain by computational
offloading (refer Section V).

The second technique uses RL to address the challenge of
computational heterogeneity of devices that leads to stragglers

1In this article, we define computational capabilities as the training time
per iteration for one batch of training samples
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Fig. 2: FedAdapt framework and its positioning within FL.

in FL as posed in RQ2. This is an automated technique
that enables the Post-Processor to identify the OP for each
individual device before a round of FL so that an optimized
offloading strategy is executed for each device participating
in an FL training round. To address the challenges in scaling
training for a large number of devices and in determining an
offloading strategy for all devices, a clustering-based approach
is employed to group devices that have similar computational
performance. Once the offloading decision for each group
is determined, the Post-Processor maps the decision on to
each device so that the offloading strategy is executed for FL
training.

The third technique employed in FedAdapt is optimized
RL so that operational conditions, namely network bandwidth
between devices and the server can be accounted for generat-
ing optimal offloading strategies. Thus RQ3 raised initially is
addressed by FedAdapt.

B. Problem Model

FedAdapt assumes that the network bandwidth between
the device and the server can change between different FL
rounds. The network bandwidth from the previous FL round
is observed for generating an offloading strategy. However,
any changes to the network bandwidth during a round are not
accounted for. The goal is to reduce the overall training time
by achieving suitable offloading strategies for all devices and
adapting to network changes that are observed.

Assume that FL training is carried out with K devices, each
device has a training workload W k for each round, an FL task
involving a server s has training speed Cst at round t, a set
of participating devices {k}Kk=1 have training speed Ckt , and
network bandwidth between the device and the server Netkt .
The offloading strategy for the device is µkt denoted as the
remaining proportion of computation on each device at round

TABLE II: Notation used in FedAdapt

Notation Description
K Number of devices in a FL task
t Time step at round t
k Denote a device participating in FL
Wk Training workload of device k
Netkt Network speed at round t of device k
Ckt Training speed at round t of device k
L(µkt ) Total amount of communication of device k at round t
s Server coordinating the FL task
Cst Training speed at round t of server s
µkt Offloading strategy at round t of device k
µt Offloading strategy at round t for all devices or groups
Tkt Local training time at round t of device k
Bk Training time of device k without offloading
Tt FL training time at t
St State at round t in RL
At Action generated by RL at round t
Rt Reward at round t
G Total number of groups
g A representative device in group g
W g Training workload of the representative device of g

Netgt
Network bandwidth of the representative device of g at
round t

Cgt
Training speed of the representative device of g at round
t

µgt
Offloading strategy of the representative device of g at
round t

T gt
Training time of the representative device of g at round
t

fnorm Normalization function used in RL to calculate Rt

t. For a round of FL training on device k, the proportion of
the workload that is executed on the device is µktW

k and
(1− µkt )W k is offloaded to the server. Let L(µkt ) be the size
of the feature maps that are transferred between the device and
server during the training of round t. It is worth noting that
L(µkt ) depends on µkt as the offloading strategy determines the
size of the transferred feature map. Finally, the training time
for device k of round t may be calculated as follows:

T kt =
µktW

k

Ckt
+

(1− µkt )W k

Cst
+
L(µkt )

Netkt
(1)

where the µk
tW

k

Ck
t

and (1−µk
t )W

k

Cs
t

is the training time on the

device and on the server, respectively. L(µ
k
t )

Netkt
is the communi-

cation time during training.
In round t, W k, Cst , Ckt and Netkt are either constants or are

variables that are not controlled by FedAdapt. The offloading
strategy for each device µkt is controlled by FedAdapt. In this
paper, µkt is an OP. The collection of OPs for K devices is
µt, which is {µkt }Kk=1. In terms of SL and SFL, µkt is uniform
among all devices for all rounds, denoted as µ. In synchronous
training, the server waits for all devices to complete training.
The FL training time of round t is Tt = max{{T kt }Kk=1}.
Table III summarises the computational workload of K devices
and the training time required for one round for different
methods.

To reduce the training time for all devices in a round,
we define our optimization target as minimizing the average
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TABLE III: Computational workload (on the device) and
training time for one round

Methods Computation Training Time

FL K∑
k=1

Wk max{{W
k

Ck
t

}Kk=1}

SL K∑
k=1

µWk
K∑
k=1

µWk

Ck
t

+
(1−µ)Wk

Cs
t

+
L(µ)

Netkt

SFL K∑
k=1

µWk max{{µW
k

Ck
t

+
(1−µ)Wk

Cs
t

+
L(µ)

Netkt
}Kk=1}

FedAdapt K∑
k=1

µktW
k max{{µ

k
tW

k

Ck
t

+
(1−µk

t )W
k

Cs
t

+
L(µk

t )

Netkt
}Kk=1}

training time for K devices as follows:

minimize
µk
t

1

K

K∑
k=1

T kt

subject to T kt =
µktW

k

Ckt
+

(1− µkt )W k

Cst
+
L(µkt )

Netkt

(2)

The training time of round t is Tt, which is bound by the
maximum training time of all participating devices. However,
FedAdapt not only optimizes the maximum training time,
which may be bound by the straggler devices, but also
aims at reducing the training time of each device. Reducing
the training time on individual devices implies reducing the
amount of computation carried out on the devices. Therefore,
in FedAdapt, we define the objective as average training time
for K devices. The objective of reducing the total training time
over all FL rounds is achieved by lowering the average training
time of each round for which µt is optimized for each round
based on variable operational conditions, namely Cst , Ckt and
Netkt .

IV. TRAINING THE REINFORCEMENT LEARNING AGENT
FOR FEDADAPT

In this section, the training process of the RL Agent
that is employed in FedAdapt to achieve the objectives of
Equation 2 combined with a clustering technique is presented.
For training the RL Agent, the input state, output action and
the reward function, which are essential components of the RL
technique are presented.

RL is a sequential decision optimization technique used
in a variety of domains [28]–[30], including optimization
problems requiring automated control [31]. An RL-based
agent is used in FedAdapt for two reasons. (1) RL provides
an automated mechanism to generate reasonable offloading
strategies for the participating devices, which maximizes
the reward i.e., training time in FedAdapt. Given the
computational heterogeneity of IoT devices, existing research
assumes that the hardware configuration of all devices can be
obtained (white box), for identifying the stragglers [11], [15].
However, obtaining the hardware configuration of all devices
may not be possible in a real FL application. In addition, the
one-time estimation of training time of a device is also often
inaccurate since certain factors, such as resource availability
and network bandwidth may change during training. RL
would eliminate the need for explicitly profiling the hardware

on the device by using the training record from the last
round. (2) A trained RL Agent can be reused for similar
FL tasks. We verify the performance of reusing the RL
Agent without retraining in Section V-D. Without training
for another specific model, the RL Agent can achieve 57%
training time reduction per round.

Basic training approach: The training approach of the
RL Agent is shown in Figure 3. The state is obtained from
the Clustering Module and comprises normalized values (for
training time and action) in contrast to the observation shown
in Figure 2. The RL Agent employs a neural network with
three layers that obtains the current input state (St) as input.
The RL Agent produces the offloading action At, which is
different to the offloading strategy produced by the Post-
processor in that the action is a value between 0 and 1 for a
device group, but the offloading strategy is a mapping of this
value on to an OP for each device. The Trained RL Agent is
obtained at the end of training. The aim of the RL Agent is
to maximize the accumulated rewards over each round, which
is in line with Equation 2. The training process begins after
the first round with classic FL training (no offloading) used to
generate the initial state S0.

Clustering technique with RL: A naive design strategy
would be to generate an offloading action for each device.
However, this strategy would be limited in the following two
ways. Firstly, if the number of participating devices changes
during FL training, the RL Agent will fail to generate an
offloading action due to the fixed input and output dimensions
of the neural network used by the RL Agent at the beginning of
FL training. Secondly, when the number of devices K becomes
large, it is challenging to train the RL Agent due to the large
action space that will need to be explored. The action space
grows exponentially with the increase in the number of devices
(for example, consider K devices and a DNN model with N
layers, then the size of the action space is NK).

Therefore, a clustering technique is utilized at the beginning
of each FL round (except S0). In the clustering process,
homogeneous devices are firstly grouped according to the
training time per iteration and network bandwidth between
the device and server into G groups (the no. of groups
is determined by heuristic algorithms, such as the elbow
method [32]). Then G groups are used instead of K devices
for the input state and output actions dimension. Therefore,
the objective is formulated as:

minimize
µg
t

1

G

G∑
g=1

T gt

subject to T gt =
µgtW

g

Cgt
+

(1− µgt )W g

Cst
+
L(µgt )

Netgt

(3)

where g is defined as a representative device in the group
that has the maximum training time. In other words, for each
group, FedAdapt treats all devices in a group as homogeneous
devices which means that they have similar computation
capability and network bandwidth. In FedAdapt, the device
with the maximum length of training time is used to represent



6

Fig. 3: Training of the RL Agent used in FedAdapt

the group. Therefore, W g , Netgt , Cgt , µgt and T gt are bounded
by the representative device in each group.

Optimizing for network bandwidth: The offloading strategy
will need to change when the operational condition, namely
network bandwidth between the device and the server changes
(the change in OP when network bandwidth changes will be
demonstrated in Section V). This is to optimize the perfor-
mance of FedAdapt. The RL method will need to generate a
different output action when the network bandwidth changes.
An intuitive approach is to train the RL Agent for different
network bandwidths. However, in practice, we observed that
this provides sub-optimal offloading actions due to the re-
wards that are dominated by when the network bandwidth
is not limited. To circumvent this, in FedAdapt, devices
with limited network bandwidth are considered within an
additional heterogeneous group and devices are dynamically
added to this group. At the beginning of each FL round, the
network bandwidths of all devices are observed. If the network
bandwidth drops below a threshold (discussed in Section V)
for a device, then it is assigned to the additional group.
The training of the RL Agent is carried out in a controlled
environment such that the network bandwidth between the
device and the server is limited to represent the group.

State and action: The maximum local training time of the
device in a group is used in the input state. The RL Agent in
each training round will produce the offloading action for each
group. The action of a group is mapped by the Post-processor
to the DNNs of all devices in the group, which is µgt . For
instance, a VGG-5 [18] model with three convolutional layers
and two fully connected layers has five offloading actions. The
output action for each group is designed to be a real value
(µgt ) ranging from zero to one so that the RL Agent adapts to
multiple DNN models. This is mapped to the percentage of
the total computational workload of the DNN that is placed
on the device. After obtaining µgt , the number of Floating
Point Operations (FLOPs) is calculated and set as the target
workload on devices. The OP closest to the target workload
is chosen. Equation 4 shows input state and output action at

round t.
St = {T gt , µ

g
t−1}Gg=1

At = {µgt }Gg=1

subject to µgt ∈ (0, 1]
(4)

Reward function: The reward function guides the training
process of the RL Agent. The reward obtained at the end
of each FL training round is denoted as Rt. To achieve the
objective of Equation 2, one option is to set the reward as the
average training time. However, in practice, the device with
the largest training time will dominate the reward. Hence, a
normalization function (fnorm) is used to calculate the reward.
The training time for each device when no DNN model is
offloaded is denoted as Bk (a baseline). The training time of
device k (T kt ) is normalized with Bk using Equation 5.

Rt =

K∑
k=1

fnorm(T kt , B
k)

fnorm =

{
1− Tk

t

Bk T kt ≤ Bk
Bk

Tk
t
− 1 T kt > Bk

(5)

Choice of algorithm: A variety of algorithms are available
to train the RL Agent for achieving the objectives presented
in Section III-B; examples include DQN [33], [34] and RE-
INFORCE [35]. In this research, the Proximal Policy Opti-
mization (PPO) [36] is chosen. It is a state-of-the-art method
which is relatively easy to use and has good performance
on standard RL benchmarks [36]. Furthermore, compared to
DQN that determines the optimal action by evaluating all the
possible actions using the Q-network [34], PPO generates the
output as an explicit action by using a policy network [36].
If DQN is adopted for determining the offloading action for
each group during FL training, all possible OPs for each group
will need to be evaluated using the Q-network [34]. However,
this is not possible in FedAdapt since the action space is
continuous (µgt ∈ (0, 1]) thereby making it impossible to
enumerate all actions. Compared to on-policy algorithms, such
as REINFORCE, PPO is an off-policy RL algorithm, which
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repeatedly uses the trajectory data from previous explorations
(interactions between the agent and the environment). This
improves the training efficiency given that exploration is time
consuming. Thus, we choose PPO for the RL algorithm.

RL training methodology: The RL Agent comprises two
fully connected networks, namely the actor and critic net-
works. Both networks have the same architecture comprising
three layers. When the RL Agent is trained the critic network
is adopted for assisting the training of the actor network. The
actor network is trained to output the offloading action. After
completing training, only the actor network will be used to
provide the offloading action. Ideally, the RL Agent should be
trained online during an FL task. However, if the RL Agent is
trained online during an FL task, the learning time is the time
for all rounds in FL training. The RL Agent will need to wait
until the completion of each round to obtain the training time
required for calculating the reward. Therefore, we train the
RL Agent in an offline manner before FL tasks. To accelerate
the training of the RL Agent, the number of batches used
for each round is reduced, referred to as truncated FL rounds
in Figure 3. In addition, we collect training time per batch
for each device instead of the training time of a round as an
element of the input state and output action. The FL model
will be trained again with normal rounds (beyond the truncated
rounds) after the Trained RL Agent is obtained.

V. EXPERIMENTAL STUDIES

In this section, the performance of FedAdapt is experi-
mentally verified. The section is organised in response to the
research questions raised in Section I. Section V-A presents
the results obtained from examining DNN layer offloading
in FL (addresses RQ1 on accelerating FL training). Sec-
tion V-B highlights the results of the RL technique used
in FedAdapt (addresses RQ2 on minimizing the impact of
computational heterogeneity of devices). Section V-C presents
the results when the RL technique is optimized to account for
changing network bandwidth (addresses RQ3). The benefits of
FedAdapt are demonstrated by comparing with classic FL.

A. Layer Offloading in FL

The assumption that layer offloading can accelerate FL
training on computationally limited IoT devices (for example,
single board computers, such as Raspberry Pi) is verified.
An empirical study is carried out under different network
bandwidth values using two Convolutional Neural Networks
(CNNs), namely VGG-5 [18] and VGG-8 [18]. The network
bandwidth values correspond to WiFi (75Mbps and 50Mbps;
same uplink and downlink bandwidth), 4G+ (25Mbps uplink
and 50Mbps downlink) and 4G (10Mbps uplink and 20Mbps
downlink) connections. The study examines the performance
of FL for all Offloading Points (OPs) of the CNNs with
different network bandwidth.

The study will demonstrate that: (i) Layer offloading from
a device to a server reduces the FL training time compared
to classic FL in which all layers of the DNN execute on the
device. Previous studies highlight that computational time on
devices is a major bottleneck for resource constrained devices

TABLE IV: Architecture of the models used for evaluating
FedAdapt. Convolution layers are denoted by C followed by
the number of filters; filter size is 3 × 3 for all convolution
layers, MaxPooling layer is MP, Fully Connected layer is FC
with a given number of neurons, and Offloading Point is OP
with index.

Model Architecture
VGG-5 C32-MP(OP1)-C64-MP(OP2)-C64(OP3)-

FC128-FC10(OP4)
VGG-8 C32-C32-MP(OP1)-C64-C64-MP(OP2)-

C128-C128(OP3)-FC128-FC10(OP4)

TABLE V: Training time per iteration when layer offloading
is used in FL for VGG-5 under different network bandwidth.

OP 75Mbps
(Wi-Fi)

50Mbps 25Mbps
(4G+)

10Mbps
(4G)

OP1 2.38 2.7 3.52 6.07
OP2 3.61 3.9 4.36 5.31
OP3 5.24 5.26 5.42 6.73
OP4 (device native) 4.36 4.36 4.36 4.36

in FL [8], [9], [22]. (ii) The performance gain (reduction in
training time) is substantial and offsets the communication
overhead that is incurred in transferring the activation and
gradient feature maps between the device and the server.

Setup: The testbed includes an edge server with a 2.5GHz
dual-core Intel i7 CPU and an IoT device, namely a Raspberry
Pi 4 Model B with 1.5GHz quad-core ARM Cortex-A72 CPU.
Only a single device is used to validate the performance gain
of FL training with layer offloading. Wi-Fi for the device is
supported by the Virgin Media Super Hub 3 router.

The Linux built-in network traffic control module tc is
employed to emulate different bandwidths between the device
and the server. The standard representation of VGG-5 and
VGG-8 models used in this study are shown in Table IV.
For simplicity the batch normalization and non-linear layer
(ReLU) are not shown. And the layers denoted with OP present
the offloading points empirically tested in this study (all layers
after the OP can be offloaded to the server). The CIFAR-
10 dataset is used and a batch size of 100 is used for all
experiments.

Results: Table V and Table VI present the training time
per iteration of FL when using layer offloading for all OPs
of VGG-5 and VGG-8. VGG-5 and VGG-8 both have four
OPs (since the FLOPs of the last dense layer is small, an OP
is not considered between two dense layers). The last OP in
each model (OP4) corresponds to device native execution of
the DNN as in classic FL. The results are an average of five
independent runs. The best result for each value of network
bandwidth is in bold.

The best values of training time per iteration for VGG-5
and VGG-8 are 2.38s and 4.75s compared to 4.36s and 10.61s
for classic FL in a Wi-Fi network. The best OP is OP1 both
for VGG-5 and VGG-8. Performance is improved when the
majority of layers are offloaded from the resource constrained
device onto the server. The training time is thus reduced by
over 45% for VGG-5 and over 55% for VGG-8 compared to
classic FL.

The best OP for both models is the pooling layer – all
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TABLE VI: Training time per iteration when layer offloading
is used in FL for VGG-8 under different network bandwidth.

OP 75Mbps
(Wi-Fi)

50Mbps 25Mbps
(4G+)

10Mbps
(4G)

OP1 4.75 5.29 6.08 8.84
OP2 7.52 8.37 8.32 9.95
OP3 10.74 11.98 12 15.93
OP4 (device native) 10.61 10.61 10.61 10.61

layers beyond the pooling layer are offloaded. This is because
pooling is a relatively low computationally intensive workload
and has a low volume of data (activation feature maps) that
needs to be transferred between the device and the server.

The best performance achieved for the four different net-
work bandwidths is reported in Figure 4a and Figure 4b for
the VGG-5 and VGG-8 model respectively. More than 45%
and 55% of the training time per iteration can be reduced for
the Wi-Fi connection on the VGG-5 and VGG-8, respectively.
With the decrease of network bandwidth, the performance ac-
celeration is reduced. For 25Mbps network bandwidth, which
is the typical bandwidth of real time 4G+ mobile network2,
the training time is reduced by 19% and 43% on VGG-5
and VGG-8, respectively. When the bandwidth is lowered to
10Mbps, offloading has negative effect on the VGG-5 model
and the best OP is the OP4 (device native training). However,
for the VGG-8 model, offloading reduces 17% of the training
time at 10Mbps bandwidth.

Offloading is influenced by the network bandwidth between
the device and the server since there is frequent communi-
cation during training. In the case of VGG-5, device native
execution is performance efficient for a bandwidth of 10Mbps.
However, offloading the layers after OP1 from the device to
the server is more effective for higher bandwidths. In the case
of VGG-8, offloading is more effective than device native
execution. Therefore, FedAdapt is envisioned to be beneficial
in scenarios where distributed IoT devices have limited compu-
tational resources and need to offload the FL training workload
onto a server. Examples include home security cameras that
use Wi-Fi and leverage computational resources on a home
hub [9], [37], [38] and wearable visual auxiliary equipment
that operates in both indoor and outdoor environments (Wi-
Fi and on mobile networks) [39]–[41]. When the network
changes as a device moves across the coverage offered by
different networks, then FedAdapt appropriately selects be-
tween device native and offloading-based FL.

B. RL Optimization for Heterogeneity

Computational heterogeneity of devices leads to the chal-
lenge of a straggler (a computationally weak device prolonging
the training time of each round) in FL. This is because resource
availability of an IoT device will vary due to varying hardware
architectures and given that other applications running on
the device may require more resources. A straggler device
can negatively impact the overall training time. Therefore, an
offloading strategy that can account for device heterogeneity
and minimize the impact of the straggler is required.

2https://www.4g.co.uk/how-fast-is-4g/

An RL Agent that can select different OPs for the devices
in FL is designed. The training process of the RL Agent is
guided by the reward function shown in Equation 5. In this
experiment, the focus is on device heterogeneity and therefore
changing network bandwidth is not considered.

Setup: The IoT-edge server environment considered has
one server and five devices. The server is the same as used
in Section V-A. The devices are: (i) Two Raspberry Pi 4
(denoted as Pi41 and Pi42) presented in Section V-A, (ii) Two
Raspberry Pi 3 (denoted as Pi31 and Pi32) Model B with
1.2GHz quad-core ARM Cortex-A53 CPU, (iii) one Jetson
Xavier NX (denoted as Jetson) with embedded GPUs. The
running CPU frequency of Pi42 is set to 0.7GHz to create a
straggler in a controlled manner.

All Raspberry Pis have the same version of Raspbian
GNU/Linux 10 (Buster) operating system, Python version 3.7
and PyTorch version 1.4.0. The Jetson and the server have
the same version of Python and PyTorch. CuDNN library
is installed on the Jetson in order to use the GPU during
training. All devices are connected to the server in a Wi-Fi
network using a router (presented in Section V-A). The average
available bandwidth between the device and server is 75Mbps.
The experiments are carried out in a real-world environment
with 5 IoT devices, which is similar to testbeds employed in
peer reviewed research on FL [8], [9], [42].

The DNN model used is VGG-5. It will be demonstrated
in Section V-D that the RL Agent trained for VGG-5 can
also be employed for VGG-8. CIFAR-10 [43] is used as
the training and testing dataset that contains 50K training
and 10K testing samples. The training samples are uniformly
divided for the 5 devices without overlapping samples. The
entire test dataset is available on the server. The number of
FL rounds is 100 and the standard FedAvg [19] aggregation
method is used in the server. The horizontal flip technique
is used for data augmentation with probability of 0.5 and the
Stochastic Gradient Descent (SGD) is utilized as the optimizer
for updating the model parameters. The learning rate is 0.01
at the start of the FL task and 0.001 at the start of the 50th

round.
Training the RL Agent: In the experiments reported in this

section, the RL agent is first trained and then deployed as a
trained agent to the FL task for generating offloading strategies
during each round. The number of iterations in one round of
FL is reduced from 100 to 5 iterations when the RL Agent
is trained as presented in Section IV. The RL Agent has
the same training schedule of 50 rounds. PPO is used as
the RL algorithm. The RL Agent has an actor network and
a critic network. Both networks have the same architecture
of fully connected layers with two hidden layers (64 and 32
neurons, respectively). The actor network is used to generate
the offloading actions whereas the critic network is used by
the RL algorithm to evaluate the value of a given state. During
training, a discount factor γ = 0.9 is set for the RL Agent to
determine the importance of using reward from future states
and the learning rates for the actor and critic networks are
configured to be 1e−4 (these are standard values used in RL
training). The actor and critic networks are updated every
10 rounds, and during each update the data collected in the

https://www.4g.co.uk/how-fast-is-4g/
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Fig. 4: Comparing training time per iteration in FedAdapt and classic FL

TABLE VII: Clustering devices into groups when using VGG-
5.

Devices Training
time (s)

Group
no.

Group
center

Jetson 0.07 1 0.07
Pi41 1.5GHz 3.58 2 3.7
Pi31 1.2GHz 3.75 2 3.7
Pi31 1.2GHz 3.77 2 3.7
Pi42 0.7GHz 5.14 3 5.14

previous 10 rounds are used 50 times. The standard deviation
of the actor network is set as 0.5 at the beginning of the RL
training and exponentially decayed (decay rate 0.9) after 200
rounds of training. This is to ensure that in the first 200 rounds,
the RL agent has more freedom to explore the action space,
but is then decreased to ensure that the RL agent will produce
actions that can generate offloading strategies that will reduce
the training time. These hyper-parameters remain the same
throughout the experiments for better generalization.

Clustering: The initial state S0 is executed without any
offloading. Table VII shows the results of clustering the five
devices in the testbed. The Jetson has the faster training speed
due to GPU acceleration. Pi42 is the straggler due to the lower
CPU frequency (0.7GHz). Using the values of the training time
per iteration of each device the k-means clustering algorithm
is used to divide all devices into G groups based on the results
from the first round of training. The device training time in
the first round is used to cluster the devices into groups. It
is assumed that the training speed of devices will not change
substantially in subsequent rounds. In this experiment, G = 3.
The Jetson and Pi42 (0.7GHz) are individually allocated to a
group, whereas the Pi41, Pi31 and Pi32 are clustered into one
group. The RL Agent will generate the offloading actions for
each group in each round.

Results: First, all potential OPs for each device are em-
pirically tested to generate the ground truth so as to verify
the offloading actions produced by the RL Agent and the
eventual offloading strategies generated by FedAdapt; this
is shown in Table VIII for VGG-5. The best performance
result is shown in bold. All results are an average of five
independent runs. The optimal offloading actions for each
group is [µG=1 > 0.96, µG=2 < 0.38, µG=3 < 0.38]. The

TABLE VIII: Training time per iteration in seconds for each
device for all possible OPs in VGG-5.

OP Jetson Pi41
1.5GHz

Pi31 and
Pi32 1.2GHz

Pi42
0.7GHz

OP1 0.51 2.38 2.99 2.63
OP2 0.28 3.61 3.97 4.68
OP3 0.27 5.24 4.93 5.88
OP4 (device native) 0.17 4.36 4.47 5.15

boundary of all OPs was tested and the borderline between
OP1 and OP2 is determined as 0.38, OP2 and OP3 as 0.79 and
OP3 and OP4 as 0.96. The proportion of workload (FLOPs)
on the device is 0.1, 0.66, 0.94 and 1 based on the OP. The
OP closest to the action generated by the RL Agent is chosen.
The boundaries of an OP is the mean of pairwise adjacent
OPs (0.38, 0.79, 0.96). Best performance is obtained for all
Raspberry Pis when the layers after OP1 are offloaded to the
server and for the Jetson is executed device native.

The empirical results from Table VIII are used to verify
the offloading actions of the RL Agent for VGG-5. The
action of the RL Agent for 500 rounds (or 500 truncated
FL rounds) for VGG-5 is shown in Figure 5. The results are
the average of five independent runs with different random
seeds and are shown for three different groups, G1, G2 and
G3. The horizontal lines for OP1, OP2, OP3, and OP4 show
the boundaries for each OP. At the start of RL training, the
RL Agent produces similar offloading actions (around 0.5) for
each group. However, the RL Agent optimizes the offloading
actions for each group guided by rewards. The mean actions of
G1, G2 and G3 become optimal after the 80th, 30th, and 40th

rounds, respectively. After the 80th round, the mean actions of
all three group are in line with the optimal offloading actions.

When the training of the RL agent is complete, the trained
actor network is deployed to guide the offloading strategies.
The average training time for one round for each device using
VGG-5 is shown in Figure 6. The training times for all Rasp-
berry Pis are reduced and any negative impact of offloading is
minimized on the Jetson. The maximum performance gain is
for the straggler Pi42 – a 50% reduction in training time per
round is observed. FedAdapt saves 40% of the total training
time for one round compared to classic FL. In this experiment,
the network bandwidth is not changed during the FL rounds.
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Fig. 5: Actions produced for each group chosen by the RL
Agent during training for VGG-5.
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Fig. 6: Device and total training time per round in seconds in
FedAdapt and classic FL using VGG-5.

C. Adapting to Changing Network Bandwidth

This section evaluates FedAdapt to address RQ3. Limited
network bandwidth negatively impacts performance when of-
floading is used (Table V. For example, if the bandwidth of
the device decreases from 75Mbps to 10Mbps then the OP
will need to change. The experimental setup is similar to
Section V-B.

Clustering: FedAdapt employs an additional group for
devices with low network bandwidth and dynamically groups
devices after each round. This is similar to the clustering
process presented in Section V-B, but considers the network
bandwidth in addition to the training time per iteration. By
considering devices with low bandwidth as a separate group
any negative impact on training time is reduced. The upload
bandwidth of Pi32 is manually set to 10Mbps (other devices
are connected via the 75Mbps Wi-Fi network). Three groups
are employed (G = 3). The Jetson, Pi41, Pi42 and Pi31 are
clustered into two groups based on their training time. The
clustering into groups is shown in Table IX.

Results: The action for each group (G1, G2 and G3) for
500 rounds generated by the RL Agent is shown in Figure 7
when training VGG-5. The results are the average of five
independent runs with different random seeds. The horizontal
lines for OP1, OP2, OP3, and OP4 show the boundaries for

TABLE IX: Example of clustering into groups for five devices
with one low bandwidth device when using VGG-5.

Device Training
time (s)

Bandwidth Group
no.

Group
center (s)

Jetson 0.07 75Mbps 1 0.07
Pi41 1.5GHz 3.58 75Mbps 2 4.16
Pi31 1.2GHz 3.75 75Mbps 2 4.16
Pi32 1.2GHz 3.77 10Mbps 3 3.7
Pi42 0.7GHz 5.14 75Mbps 2 4.16
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Fig. 7: Actions produced for each group chosen by the RL
Agent during training of VGG-5 that accounts for devices with
low network bandwidth to the server.

each OP. At the beginning of training, the RL Agent rapidly
learns for G1 and G2. After the 20th and 60th rounds, the
mean action of G1 and G2 become optimal, respectively.
The optimal action for G3 is determined by the RL Agent
only after the 240th round with more exploration. This is
because at the beginning of training, the reward from G1

and G2 dominate the total reward, which guides the agent
in optimizing the action. However, when offloading actions
for G1 and G2 become optimal, the agent gradually learns for
G3. The mean actions of all three groups are in line with the
optimal offloading actions after the 240th round.

D. Comparing FedAdapt and Classic FL

The performance of FedAdapt is compared with classic
FL on the dimensions of training time and accuracy. The
environment is set up on the five devices used previously for
FL training on the CIFAR-10 dataset in 100 rounds. During
the first 50 rounds of FL training all devices are connected
with Wi-Fi (75Mbps bandwidth). The remaining 50 rounds are
divided into 5 equal time slots to lower the network bandwidth
of the specific devices to 10Mbps in a controlled manner. The
sequence is Jetson (50th to 59th round), Pi41 (60th to 69th

round), Pi42 (70th to 79th round), Pi31 (80th to 89th round),
and Pi32 (90th to 99th round). The FedAdapt Trained RL
Agent from Section V-C is deployed to produce the offloading
action for each device in the FL rounds using VGG-5. For
classic FL, training on devices is done without offloading.

Figure 8 shows the training time of VGG-5 for each round
of FedAdapt and classic FL. Until the 50th round FedAdapt
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Fig. 9: Test accuracy per round of FedAdapt and classic FL
for VGG-5.

reduces the average training time by 40% in comparison to
classic FL. For the training of the last 50 rounds, the network
bandwidth changes for different devices. FedAdapt responds
to the changes by using observations from the previous round.
Then a suitable offloading strategy for the current round is
obtained. Since the optimal action for the Jetson is OP4 (device
native), there is limited impact on training time (Round 50).
For the other devices the change of bandwidth makes the
offloading action invalid. However, FedAdapt adapts to these
changes in the next round by reassigning the device into G3.
For the overall 100 rounds, FedAdapt reduces the training
time by nearly 30% compared to classic FL.

Figure 9 compares the test accuracy of VGG-5 using
FedAdapt and classic FL for 100 rounds. Both have similar
accuracy. FedAdapt employs the FedAvg algorithm as in
classic FL. Therefore, FedAdapt achieves the same conver-
gence speed and final accuracy as classic FL. The overhead
incurred by FedAdapt was measured, which comprises the
time for running the RL Agent’s actor network and the time for
redeploying models on each device. An average overhead of
1.6s was incurred (0.5% of the time for one round of training).
In short, the overhead in using FedAdapt is negligible and
the performance gain achieved outperforms classic FL.
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Fig. 10: Device and total training time per round in seconds
in FedAdapt and classic FL for VGG-8 when using the RL
Agent trained for VGG-5.
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Fig. 11: Comparing the training time per round in FedAdapt
and classic FL for VGG-8 when using the RL Agent trained
for VGG-5. Experimental setting is presented in Section V-C.

Reusing the RL Agent of FedAdapt trained for VGG-5 on
VGG-8: The performance of FedAdapt using the RL Agent
that was trained for VGG-5 was evaluated on VGG-8. The
Trained RL Agent on VGG-5 (presented in Section V-C) is
used without custom retraining for VGG-8. The average train-
ing time of one round for each device is shown in Figure 10.
The maximum performance gain is for the straggler Pi42 – a
57% reduction in training time per round is observed. Overall,
FedAdapt saves 57% of training time compared to classic FL.
Although FedAdapt reduces the training time when the net-
work bandwidth changes, it generates sub-optimal offloading
strategies after the 70th round. Instead of selecting offloading-
based strategies for devices that have a low bandwidth for
VGG-8, the RL Agent selects device native strategies, thereby
minimizing the performance gain. This is because the RL
Agent is trained for VGG-5 in which device native strategies
have maximum performance gain. Nonetheless, the overall
training time is reduced by nearly 40% when compared to
classic FL as shown in Figure 11.

VI. CONCLUSIONS

Classic FL is impractical in IoT-edge environments given
the limited computational capacity on IoT devices, hetero-
geneity of devices and varying network bandwidth between
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the device and server, all of which significantly affect train-
ing performance. This paper presented FedAdapt, a holistic
framework that surmounts the above limitations by incorporat-
ing three techniques for accelerating FL, reducing the impact
of stragglers and adapting to varying network bandwidth.
FedAdapt reduces the training time of stragglers by over
half compared to classic FL. When faced with stragglers and
changing network bandwidth FedAdapt outperformed classic
FL by reducing training time up to 40% while achieving
the same accuracy and convergence speed with negligible
execution time overhead.

Limitations and Future Work: FedAdapt relies on RL and
clustering for generating offloading strategies for each partici-
pating device. However, as the number of devices becomes
large, a single RL agent may not be suitable to generate
offloading strategies for all devices. Distributed RL agents
will need to be investigated along with hierarchical clustering
of devices. In addition, since FedAdapt employs offloading-
based training to accelerate training on IoT devices, additional
communication overheads between the devices and the server
are introduced. Techniques such as quantization may reduce
the communication cost. These will be explored in future
work.
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