
TOWARDS AUTONOMOUS OPEN RADIO ACCESS NETWORKS

Adrian KLIKS1, Marcin DRYJANSKI2, Vishnu RAM3, Leon WONG4, Paul HARVEY5

1Poznan University of Technology, 2Rimedo Labs, 3Independent Expert, 4Rakuten Mobile, 5University of Glasgow

NOTE: Corresponding author: Adrian KLIKS, e-mail: adrian.kliks@put.poznan.pl

Abstract – In this paper we give an overview of an open disaggregated network architecture based on an Open
Radio Access Network (O-RAN), including the current work from standards bodies and industry bodies in this area.
Based on this architecture, a framework for the automation of xApp development and deployment is proposed. This
is then aligned with the key concepts described in ITU-T in terms of the evolution, experimentation, and adaptation
of controllers. The various steps in such an aligned workflow, including design, validation, and deployment of xApps,
are discussed, and use case examples are provided to illustrate further our position regarding the mechanisms needed
to achieve automation.

Keywords – 5G, 6G, network automation, Open RAN, O-RAN, virtualization, xApp design

1. INTRODUCTION
For the last few decades, telecommunication networks
have been focused on connecting people. As the
years have progressed, this connectivity has grown from
human-orientated communication, such as web brows-
ing, to include data-centric communication or machine-
centric communication, as found in IoT device commu-
nication. To support this expanded role, telecommuni-
cation networks have continuously been innovating in
order to meet current needs. Thanks to over 15 years
of innovation, partial or full production deployments of
virtualized end-to-end hardware infrastructure is now a
reality. Most notably, this includes the virtualization of
the Radio Access Network, known as (RAN).
In order to achieve interoperability for the use and de-
velopment of management and operation software in the
context of a virtualized RAN, the community is embrac-
ing the concept of an Open RAN (O-RAN) architecture,
see Section 2. Here, control and monitoring functional-
ity is encapsulated in either highly responsive software
xApps or higher-level strategic software rApps. Each ap-
plication is then used to drive an associated runtime re-
ferred to as the RAN Intelligent Controller (RIC). This
way, engineers are presented with a clear way in which to
design control and monitoring functionalities for RAN
in software.
Despite the clear conceptual architecture for O-RAN
using which xApps can be created, the design, imple-
mentation, testing, maintenance, and deployment of the
xApp is the responsibility of the developer. Further-
more, there is currently no common RIC implementa-
tion, meaning that xApp developers must design for a
given platform, limiting reuse and deployment on other
RIC platforms and precluding mass deployment. Con-
sequently, in order to achieve widespread adoption of
xApp-driven control of the RAN, it is necessary to in-
troduce automation to the adaptation of the xApp both

at the RIC platform level that it operates upon as well
as in the RAN that it is supposed to operate.
This work proposes an approach to achieve automation
in the lifecycle of xApps. Thus, starting from the use
case, requirements, design of the xApp, validation of the
xApp, and finally, deployment in networks, the steps in
the lifecycle are analyzed. The key considerations and
challenges in achieving this automation are called out.

2. OPEN RAN OVERVIEW
The open RAN concept is based on the following prin-
ciples: open interfaces, functional RAN disaggregation,
hardware-software split, and native data-driven intelli-
gence brought by the RIC concept [1]. The following
section provides an overview of the O-RAN architec-
ture, introduces RIC, xApps and rApps, and discusses
standardization developments.

2.1 O-RAN architecture
Open RAN architecture, along with its building blocks
with their functionalities and open interfaces, is stan-
dardized by the O-RAN ALLIANCE and is shown in
Fig. 1 [2].
The O-RAN architecture adopts the 3GPP-based
Higher-Level Split (HLS, or split 2) and Lower-Level
Split (LLS, or split 7.2) building on the disaggregated
base station structure that divides its functionality into
a Central Unit (CU), a Distributed Unit (DU), and a
Radio Unit (RU). A CU is further split into the control
plane (CU-CP) and the user plane (CU-UP). In O-RAN
language, those are prefixed with O-, namely O-CU-UP,
O-CU-CP, O-DU, and O-RU, to refer to the fact that
they are 3GPP-based functionalities adapted to O-RAN
architecture.
Besides the functional split of a gNB, the O-RAN ar-
chitecture is also defining a concept of the RAN Intel-



Fig. 1 – O-RAN architecture

ligent Controller (RIC), abstracting out RAN control
and monitoring from a base station. RIC is further split
into two logical entities, namely near-real-time (Near-
RT) RIC and Non-RT RIC. Those serve as platforms
for external applications aiming at radio network opti-
mization, respectively, xApps and rApps, operating in
different timescales and scopes, as discussed in the fol-
lowing sections.
To complete the picture, O-RAN architecture also cov-
ers: O-Cloud i.e., a cloud computing platform on which
the virtual elements (like, O-CU, O-DU, or Near-RT
RIC) can be deployed; and Service Management and
Orchestration (SMO), the management platform, with
one of the functions being Non-RT RIC.
The above-mentioned elements are connected via the O-
RAN-specified interfaces. They could be split into three
types:

• RAN-internal, namely: Open Front-Haul (OFH),
an eCPRI-based interface between O-DU and O-
RU to transfer I/Q samples; E1 and F1, 3GPP-
based interfaces defined for HLS, between CU-CP
and CU-UP and CUs and DU, respectively.

• Control interfaces, namely: A1, between Non-RT
RIC and Near-RT RIC for policy management, en-
richment information transfer, and ML models up-
dates; and E2, between Near-RT RIC and RAN
nodes serving as a control loop to execute com-

mands and provide measurements from the O-CU
and O-DU nodes.

• Management interfaces (also called Failure, Con-
figuration, Accounting, Performance, Security
(FCAPS)), namely: O1, a management interface
for all RAN elements but O-RU; O2, interface for
O-Cloud platform resources and workload manage-
ment (e.g., scaling up/down resources); OFH M-
Plane, the management interface for the O-RU.

2.2 Non-RT RIC vs. Near-RT RIC
As mentioned, the RIC is split into two following logical
entities as shown in Fig. 2.

Fig. 2 – Near-RT RIC and Non-RT RIC

The Non-RT RIC’s general task is to support non-
real-time network and procedures optimization. The
Non-RT RIC is composed of AI/ML model training,
and service and policy management, which create the
policies to be sent over the A1 interface and rApp man-
agement functions. As an input to the Non-RT RIC,
besides the measurements and statistics, there is also
so-called Enrichment Information (EI), i.e., additional
information from network functions, and from external
non-network functions, like user priority. The Non-RT
RIC is responsible for configuration management, ana-
lytics, creation of the AI-based feeds, and provision of
the recommendations to the Near-RT RIC [2].
The Near-RT RIC, on the contrary, serves as a soft-
ware platform to allow the xApps to control the RAN.
This is supported by the RAN and UE database stor-
ing the network state, along with xApp management,
security, and conflict mitigation functions. It enables
near real-time control optimization of the RAN elements
(called E2 Nodes) via actions sent over the E2 interface
[2].



The RICs are accompanied by two control loops.
One is called a non-real-time control loop (linked
to Non-RT RIC) with a time span larger than one sec-
ond (» 1s). In this time frame, the policies are set, the
RAN analytics are gathered, and the AI/ML models
are trained based on long data sets. The time is used
to deduct the trends in the network (e.g., traffic pattern
over an hour, over a day, over a week, etc.) to optimize
the overall RAN behavior.
The Near-RT RIC, in turn, closes the near-real-time
control loop, which is between ten milliseconds and
one second (> 10ms, < 1s). This is the time period for
the operation of xApps, deciding on control actions, or
producing policy updates, and gathering the key perfor-
mance measurements. It is a time-scale related to as-
pects like connection management where e.g., an xApp
decides to change the cell that UE is connected to.

2.3 rApps vs xApps
In the architecture we discussed in the previous sections,
E2 Nodes (i.e., O-CUs, O-DU) expose parameters and
functionalities towards the RIC, which can be used by
xApps and rApps to tune the behavior of the radio net-
work. The applications shall behave subject to operator
goals, network state, and traffic conditions and may be
equipped with Artificial Intelligence (AI) and Machine
Learning (ML) algorithms. The main goal for the xApps
and rApps is to autonomously adapt to the changes
within the network, traffic, and channel and make sure
that the Quality of Service (QoS) requirements and Ser-
vice Level Agreement (SLA) are fulfilled.
Let’s now compare the xApps and rApps.
xApps are hosted in the RAN domain. They are ap-
plications designed to run on Near-RT RIC, which are
required to follow a specified API definition. Each xApp
could be designed as one or more microservices. At the
point of onboarding, an xApp needs to identify itself
and provide information to the Near-RT RIC about the
data types it wants to consume and the outputs it will
produce. It is independent of the Near-RT RIC and may
be provided by a third party. The individual xApp con-
trols a particular RAN functionality exposed by the E2
Node [3]. Examples of xApps are mobility management,
admission control, traffic steering, load balancing, etc.
It is worth noting that depending on the performance
targets selected by the operator (and, more generally, by
the end user of the xApp/rApp), some of these exam-
ples may be implemented and achieved in various ways.
Moreover, let us highlight that time-critical operations
and algorithms will be realized in a very short time scale
at the E2 Node.
rApps are modular applications designed to run on
a Non-RT RIC and sit in the management plane.
Their aim is to provide Value-Added Services (VAS) re-
lated to RAN optimization and procedure optimization
through the Non-RT RIC. Examples of VAS include:
policy-based guidance and enrichment information pro-

visioning, performing data analytics, AI/ML training,
and inference for RAN optimization or to be used by
other rApps, providing recommendations on configura-
tion management actions [4]. Examples of rApps are
energy-saving management, capacity, and coverage op-
timization, or QoE prediction and assurance.
Similarities between xApps and rApps are that:

• they work as independent applications at the Near-
RT RIC or Non-RT RIC, respectively;

• they need to fulfill the requirements for open API
to be able to communicate with the other part of
RIC.

The differences between xApps and rApps are the fol-
lowing:

• an xApp directly controls an actual function within
the RAN element, while an rApp is used within the
Non-RT RIC framework helping to create policies
(i.e. indirectly influences the RAN behavior);

• xApps and rApps work in different time scales with
respect to the RIC they work within (i.e. xApps
with a control loop in order of tens or hundreds of
milliseconds, and rApps with a control loop in order
of seconds, minutes or even hours).

Recently, in the research community, another type of
application has been considered within the O-RAN con-
text, called dApp. Those, in turn, sit directly at O-CUs
or O-DUs and receive real-time data from the RAN,
along with E2 from Near-RT RIC, and execute inference
and control of lower-layer functionalities, thus enabling
stricter timing requirements than xApps and rApps, for
such use cases, as beam management and user schedul-
ing [5].1

2.4 Standardization and enablers
As already mentioned, the main standardization body
for Open RAN is O-RAN ALLIANCE. It is responsible
for defining individual parts of the O-RAN Architec-
ture. This includes the use cases, architecture, interface
specifications, reference designs, and protocols.
In addition, there has also been considerable work done
in other organizations, including SDOs and industry
bodies, regarding deployment options, development of
xApps and integration (at the policy level), and man-
agement of near-real-time RICs.
1While a detailed study of Intellectual Property Rights (IPR) is
out of the scope of this work, enabling the xApps/rApps delivered
by the third-party requires, in general, careful consideration of
the IPR issues. It is indeed possible that sophisticated IPR poli-
cies applied by contemporary IPR holders in the communications
domain may have to be considered during software development
and deployment. However, it is possible that the disaggregation
of RAN functions as well as the assumed modularity paves the
way for the creation of an innovation ecosystem for the third
parties.



• The Telecom Infra Project’s (TIP) OpenRAN pro-
gram supports the development of disaggregated
and interoperable 5G Radio Access Network (RAN)
solutions based on service provider requirements.
This aims to continuously improve the performance
of the RAN by bringing innovation, automation,
and competition. Reference architecture and de-
sign are output from this initiative for multiple de-
ployment options of RU, CU and DU. In addition,
the TIP OpenRAN RAN Intelligence & Automa-
tion (RIA) project focuses on the availability and
use of data so that a centralized RAN controller
can manage a disaggregated, virtualized, and multi-
vendor RAN. Thus the primary aim is to provide
practical solutions for OpenRAN with multiple de-
ployment options, for various use cases, including
the integration of AI/ML. While this could be a
good starting point for automation, this does not
currently address the problem of automation in the
lifecycle of xApps.

• The Open Networking Foundation (ONF) works
on building open source components for the mo-
bile RAN space, complementing O-RAN’s focus on
architecture and interfaces by building and trialing
O-RAN-compliant open source components as part
of its SD-RAN project. Based on the O-RAN ar-
chitecture, SD-RAN is developing a near-real-time
RIC (near-RT-RIC) and a set of exemplar xApps
for controlling the RAN. Thus, the primary aim is
to accelerate the adoption of the O-RAN architec-
ture and the availability of interoperable O-RAN
components.

• The Open Network Automation Platform (ONAP)
is a platform for the orchestration, management,
and automation of network and edge computing ser-
vices for network operators, cloud providers, and
enterprises. It enables rapid automation of new
services and complete lifecycle management for 5G
and next-generation networks. ONAP has been
enhanced to support A1 Policies. The A1 Policy
functions are orchestration and automation func-
tions for non-real-time intelligent management of
RAN functions. The integration of A1 allows exist-
ing ONAP infrastructure to support non-real-time
control of the RAN. Using the A1 interface will fa-
cilitate the provision of policies for individual UEs
or groups of UEs; monitor and provide basic feed-
back on policy state from near-real-time RICs.

• The ITU-T Focus Group on Autonomous Networks
(FG AN) studied the use cases for autonomous net-
works. This study centered around the three key
concepts of exploratory evolution, online experimen-
tation, and dynamic adaptation of ”controllers” to
networks. A controller is a workflow, open loop or
closed loop composed of modules, integrated into a
specific sequence, using interfaces exposed by the

modules, which can be developed independently of
the network implementations. Architecture compo-
nents, subsystems, and their interactions which en-
able the key concepts, were described. This frame-
work provides the fundamental building blocks for
autonomy, and by representing xApps in the form
of controllers and applying the concepts developed
in FG AN, it is possible to achieve a high level of
automation in their lifecycle.

2.5 Research in the O-RAN domain
Open RAN has become an attractive research topic, as
RAN openness, modularity and disaggregation paved
the way for new scientific challenges and opportunities.
The functioning of RICs and their internal components
(such as the subscription management module, con-
flict mitigation module, etc.), although partially stan-
dardized, constitute a very viable investigation domain.
Moreover, the development of xApps/rApps is an in-
teresting investigation topic, as new and sophisticated
solutions can be provided that address specific aspects
of RAN functions. For example, in [6], the authors dis-
cussed ways for efficient spectrum sharing through data-
driven dynamic control in real time. Likewise, the pa-
per [7] addresses how policy-based traffic steering can
be implemented in future wireless networks. As the im-
pact of artificial intelligence on Open RAN is foreseen
to be crucial, in [8], the role of AI/ML tools in xApp
design is widely discussed. In that context, it is worth
mentioning the great overview of Open RAN and ongo-
ing research activities presented in [9] In our context, it
is important to concentrate also on the implementation
and, in particular, on automation aspects. In [10], a
dedicated framework called OrchestRAN has been dis-
cussed, which allows for network automation through
orchestrated intelligence. In a similar spirit, in [11], the
closed-loop automation in 5G Open RAN was presented,
where the authors focus on enabling the optimization
of 5G network resources and services in an automated
and self-configured manner. Finally, it is worth men-
tioning the ongoing work in the field of tight cross-layer
optimization through application-to-network communi-
cation, where one of the examples is the MPEG Server
and Network Assisted DASH (SAND) solution [12]. In
that context, let us notice that rApps (as entities oper-
ating on a longer time scale) of a different kind may be
provided to cooperate with the SMO for better network-
to-application support. Next, flexible policies down to
the near-real-time RICs for better support of SAND-
like applications to guarantee the assumed quality of
service or experience. Finally, dedicated xApps may
be deployed, which improve the network performance
in such a way that SAND-line solutions are supported.
An interesting approach for using SAND has been dis-
cussed in [13], where heterogeneous Quality of Service
requirements of different applications in 5G systems are
managed in the so-called xStream platform. The au-



thors have proposed the improvement of the SAND lim-
itations by enabling communication between various ap-
plications and the 5G system. It paved the way for in-
novative solutions for various types of traffic, as proved
by extensive simulations. Such an approach can be con-
sidered for xApp/rApp implementation and simulation.
Next, in [14] the new architecture called ARBAT has
been proposed. It uses the concept of the Universal Net-
work Device and Unified Cellular Network; moreover,
it utilizes the AirHYPE wireless hypervisor, together
with the above-mentioned network-user application in-
teraction through the xStream platform as well as the
ServiceBRIDGE. Following this idea, in [15], the design
of an optimization-based power allocation model to in-
crease effective power efficiency was discussed in the con-
text of guaranteed QoS. The same hypervisor AirHYPE
has been considered for designing novel architectural so-
lutions for the upcoming sixth generation of cellular in
[16]. A very interesting roadmap paper has been pub-
lished recently, i.e., [17], where the enabling techniques
and recent advancements on 6G-related topics are high-
lighted, and open problems with possible solutions are
discussed.

In June 2022, O-RAN ALLIANCE founded a research
task force called the next Generation Research Group
(nGRG), which focuses on the research of open and in-
telligent RAN principles in 6G and future network stan-
dards. nGRG work is split into several research streams,
including requirements, architecture, AI/ML, security,
and research platforms. Supplementing the prior and
ongoing research activities, in our paper, we focus on
the definition of the automation of the xApp/rApp de-
velopment and verification process.

3. THE NEED FOR XAPP DEVELOP-
MENT AND DEPLOYMENT AU-
TOMATION

As with any emerging technology, current x/rApp im-
plementations are strongly coupled to the use case(s) for
which they are created, as well as with vendor-specific
RIC implementations. This requires engineers to manu-
ally adapt x/rApps from one use case to another and
possibly re-implement them for use on different RIC
implementations. Such effort prevents reuse, slows de-
velopment, requires (programming) development skills
from domain experts, and ultimately acts as a barrier
to O-RAN adoption.

In this section, we discuss existing efforts that seek to
achieve autonomy in O-RAN and then present our vision
on how to achieve autonomous O-RAN taking xApps as
a representative exemplar.

3.1 ITU-T related work
The ITU-T Focus Group on Autonomous Networks
(FGAN)2 has been working towards understanding and
describing the elements required for autonomy in net-
works, especially in the context of the three key con-
cepts of exploratory evolution, online experimentation,
and dynamic adaptation [18].
The concept of exploratory evolution introduces the
mechanisms and processes of exploration and evolution
to adapt a controller in response to changes in the net-
work. Generation of new controllers or update (evolve)
of existing controllers to respond to such changes are
part of evolution. Validation of controllers and their
logic, using simulated and/or real data, may be done be-
fore the deployment of controllers in the network. This
continuous process, based on monitoring and optimiza-
tion of deployed controllers in the network, is called real-
time responsive experimentation. The adapted and val-
idated controllers are integrated at run time to underlay
networks. Thus, dynamic adaptation is the final concept
in equipping the network with autonomy and the ability
to handle new and hitherto unseen changes in network
scenarios.
The current use cases studied in FGAN in this context
include analysis-driven evolution in virtualized RAN
based on DevOps [19]. Such use cases take advan-
tage of the programmability and interfaces exposed by
RAN components in open RANs while allowing develop-
ers the opportunity to create applications (e.g., xApps)
based on data from RAN. Provisioning and analysis of
closed loops at near-real-time RIC allows operators to
analyze the data and arrive at the new use case needs
at the edge. This can then be used to drive the process
of evolution of new xApps to enable the development,
instantiation, and deployment of xApps based on the
capabilities of various RAN nodes.
An initial proof of concept, done under the initiative
of ”Build-a-thon 2021” by FG AN produced a demon-
stration of a YAML-driven docker container-based in-
stantiation of controllers. This was independently sup-
ported by an xApp implementation however, integrated
automation of the xApp lifecycle was not achieved in
FG AN Build-a-thon 2021.
Conceptually, the study of x/rApp lifecycle automation
discussed in this work is well aligned with the concepts
discussed in standards and industry bodies, including in
ITU-T, and can even be considered as a realization of
the concepts in the O-RAN context.

3.2 Towards xApp automation
Open RAN architecture creates opportunities for the
Mobile Network Operators (MNO) for modular im-
provement of the access network domain through instal-
lation, uninstallation, or upgrade of specific functions,

2www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx -
Accessed 14/10/2022



mainly xApps and rApps. It means that the MNOs
should be able to download, test, verify and, depending
on the evaluation results, either keep the application
or simply roll it back. Moreover, the immediate conse-
quence of such an approach is the need for secure and
mature space (domain) from where the software could
be purchased by the MNOs.
In a classic model, the MNOs will directly order the
implementation of the desired function by one of its col-
laborators, subcontractors or will outsource it via some
software houses. However, another approach is also pos-
sible, which is widely known in the domain of applica-
tions for mobile phones and regular PC, where tested
and certified application can be downloaded from the
dedicated stores. Analogously, in the context of xApps
and rApps, the usage of reputable and trusted applica-
tion stores may be beneficial to the MNO.
The xApp/rApp store is highly dependent on the RIC
platform deployed underneath, as each RIC may have
different rules of coexistence of different applications,
conflict mitigation, conformance reasoning, exception
handling (and many more). One may see again the anal-
ogy to the mobile application stores, which are adjusted
to the specific operating systems running on the mo-
bile device. The xApp/rApp provider follows then the
rules specified by the RIC provider and delivers the re-
quested application to the store, which, after detailed
evaluation and verification, makes it accessible from its
online resources and exposes it to the network opera-
tors. The latter, being the end users of the xApp/rApp
stores, select the most appropriate solution, analyze its
performance benchmarks and metrics, and finally install
and deploy them in the network. Thus, there are three
players in the described model, as illustrated in Fig. 3,
mainly: certified (trusted) xApp/rApp providers, xAp-
p/rApp stores, and MNOs.
One may recognize two possible variants of cooperation
between the software providers and the stores, which are
directly related to how the RIC providers are positioned
to the underlying base station software (i.e., O-RAN’s
O-CU/O-DU software). In the first approach, the RIC
is fully associated and dependent on the RAN software
and, in consequence, is highly optimized for it. For ex-
ample, there could be some parameters or pre-standard
service models available which are not compliant with
the O-RAN ALLIANCE specifications, which would en-
able more insights and more granular optimization of
the base station operation.
Following another way, the RIC is more generic and thus
is independent of the base station software, which it
will be controlling; in consequence, it is not optimized
for it. In such a case, the E2 service models will be
following the O-RAN ALLIANCE’s specification, and
the usability of the specific xApp may be limited to the
parameters implemented by the software provider of the
underlying O-CU/O-DU.
In the former case (indicated in Fig. 3 in blue), the xAp-
p/rApp provider is also strictly bounded with the cer-

tain RIC platform and with the underlying software.
Thus, it may deliver software only to the specific store
as it is certified for it. Contrarily, in the second approach
(marked in green in Fig. 3), the xApp/rApp providers
may provide more generic (yet not that effectively op-
timized) solutions. Clearly, xApp/rApp providers may
target both kinds of stores as well. In terms of security
and reliability of the xApp/rApp providers, the stores
may require dedicated certificates, which may be issued
either by the dedicated Certificate Authority (CA) or by
any third party yet trusted CA. Once the applications
are deployed in the store, the MNO may check them and
finally purchase if they fulfill all of their performance,
security, and quality requirements.
However, one immediate conclusion is that there is a
strong need for automation procedures at various phases
of the above process, as it will be described in detail
in the following sections. The store owner has to be
fully convinced that the application delivered by the
xApp/rApp provider fully matches all of the defined
requirements of the store, follows all of its guidelines,
and is written with good programming practices. Thus,
the delivered software has to be checked for its integrity
and completeness of all its internal components; it has
to be verified from the perspective of potential security
issues it could generate in the final system of the MNO.
Finally, it has to be checked for its conformance, perfor-
mance, and dependencies with other applications run-
ning on the desired RIC. All of these tests are necessary,
yet many others may be specified. It is also important
for the MNO to have the possibility to test the perfor-
mance of the xApp/rApp in the context of its actual use
case. This puts a requirement on the xApp/rApp store
to have a tight connection to a Digital Twin (DT) [20,
21, 22], where the specific scenario can be emulated with
the xApp/rApp under test. In consequence, it is impos-
sible to perform an efficient verification loop (marked in
Fig. 3 with dashed line) without automation and proper
preparation of the whole xApp/rApp package. Finally,
it is worth mentioning here that both the store and the
MNO may provide evaluation and performance reports
back to the xApp/rApp provider and the store, respec-
tively. Such reports may be periodic or may be sent by
request; nevertheless, the presence of the feedback loop
has to be considered, as it allows for permanent applica-
tion improvement based on the delivered reports. Such
a procedure should also be automated, at least to some
extent.
It is worth mentioning the importance of marketplace
ownership in the above context. For the time being,
various cases are possible from a business perspective.
In the above discussion, we have considered two scenar-
ios, a common marketplace (also called 3rd party xApp
store) and a customized one (called a customized xApp
store). Although it would be possible from the stan-
dardization perspective that the third-party xApp/rApp
providers may deploy their software in all available mar-
ketplaces, the ownership aspects of the marketplace, if



Fig. 3 – Relations between the xApp/rApp providers, store and the network operator; MNO - Mobile Network Operator, CA - Certificate
Authority

not considered carefully, may somehow impact in vari-
ous ways the performance of open RAN solutions.
Finally, let us comment on the impact of the underlying
hardware (i.e., E2 nodes in the O-RAN architecture)
on the template-based xApp/rApp delivery. One has
to notice that by standardization of all interfaces, pro-
tocols, messages, service models, and modules on the
RIC, the whole concept is, to some extent, hardware-
independent. The software, i.e., xApps/rApps, will re-
ceive all network performance parameters by subscribing
to the appropriate services exposed by RICs. Thus, as
long as the concept is implemented completely, the xAp-
p/rApp implementation will be hardware-independent.
However, every base station (E2 node) operating on
specific hardware will be characterized by some per-
formance metrics (such as the frequency of key per-
formance indicators delivery from the base station to
the RIC). In consequence, the underlying hardware may
have an indirect impact on the performance of the xAp-
p/rApp, as, for example, not all of the required data by
the xApp/rApp will be available. In general, however,
the xApp/rApp can be understood as strongly indepen-
dent from the underlying hardware applied in the E2
nodes.

3.3 Three perspectives in xApp/rApp au-
tomation

To push the concept of xApps and rApps closer to prac-
tical implementation, each phase of the application life-
cycle has to be fully automated. It includes not only
the design and implementation stage but also verifica-
tion and testing by the store and purchasing, download-

ing, and deployment by the MNO in the real network.
Processing any of the above steps manually would be
highly inefficient in terms of consumed time, utilized
human and computing resources, and the total price at
the end. Thus, one may identify three, to some ex-
tent, excluding perspectives on xApp/rApp design and
deployment process.
First, from the perspective of the xApp/rApp devel-
oper, the main effort should be made the investigation
of new technical and algorithmic solutions for specific
problems in wireless networks. It will be mainly possi-
ble if the whole programming environment guarantees
efficient tools for code verification, performance evalu-
ation, and advanced debugging. It should be assumed
that the xApp/rApp developer will be, in general, not an
in-depth specialist in the software environment offered
by the xApp/rApp store associated with the specific
RIC provider. The process of uploading a new appli-
cation to the xApp/rApp market shall be seamless for
the developer, as the fundamental assumption is that
the developer follows the well-established programming
rules accurately specified by the xApp/rApp store and
RIC provider.
Next, from the store’s point of view, a similar observa-
tion can be made. The store owner should be in pos-
session of such software tools (environment) that will
allow smooth and easy uploading of new applications
from external developers. The store owner does not
necessarily need to be an algorithmic expert in the field
of wireless communications, as its key role is to man-
age the entire application efficiently. On the contrary,
the xApp/rApp store should be prepared not only to
process new applications but also to permanently moni-



tor the status and dependencies with other, already ex-
isting applications available on the market. Based on
detected conflicts or potential dangerous dependencies
among various applications, the store should be able to
automatically inform interested xApp/rApp developers
about the encountered conflicts or possibly dangerous
relations. Finally, the store shall be able to perform
permanent and on-request effectiveness tests of any set
of uploaded applications and react accordingly to the
observed performance metrics (benchmarks).
In Fig. 4, the three typical phases of the development
and deployment of new xApp / rApp are illustrated from
a high-level perspective. When the external xApp/rApp
provider decides to develop a new application, he needs
to download the appropriate template of such an ap-
plication and follow the store and RIC rule of applica-
tion implementation, as will be discussed in Section 4.
Then, applying any of the company-suitable program-
ming principles (such as following the continuous in-
tegration continuous development paradigm, known as
CI/CD), the main programming effort is made. In this
phase, local verification, testing, and improvement have
to be done based on the installed simulation environ-
ment. Once the application is ready and verified, it
can be uploaded to the store, where the new applica-
tion will first be validated and verified (for example,
completeness), as defined in Section 5. After that, the
performance of the newly uploaded application will be
measured in various ways (such as following some prede-
fined benchmark procedures), and its functionality per-
formance metrics should be monitored to update the
developer in case of any issues. Finally, if the applica-
tion passes all of the verification tests, it will be exposed
to the MNO, who can request it, and after downloading,
verify it in its own environment. As will be analyzed in
Section 6, such an environment could be realized in the
form of a digital twin, which can mimic the architecture
of the real network and the use case. Once the verifica-
tion tests in the virtual environment pass positively, the
MNO may decide to deploy it in the true network. At
the same time, it may provide updates to the store (and
to the developer) about the truly achieved key perfor-
mance indicators.

4. TEMPLATE-BASED XAPP DE-
SIGN

One of the immediate observations that can be made
here is the need for dedicated software for the develop-
ment of specific xApps/rApps. The presence of Software
Development Kits (SDK) together with specified Appli-
cation Programming Interfaces (API) is of utmost need
to allow efficient xApp/rApp development by third-
party companies. In practice, such a set of SDKs and
APIs will be strongly related to the considered RIC of-
fered by a certain provider. As it will support effective
xApp/rApp development by the application providers,
such an approach will entail portability issues; that is,

the application adjusted to the specific RIC will proba-
bly not be compliant with other RIC platforms. Various
solutions could be applied here, such as the implemen-
tation of xApps/rApps in native code; however, such
discussion is out of the scope of this work.
As stated above, to upload any newly developed appli-
cation to the xApp/rApp store, it has to fulfill vari-
ous requirements specified by the store itself. To make
this process efficient and maximally autonomous, the
template-based approach could be applied, where the
store releases technical guidelines on how to imple-
ment store-compliant software packages. These tech-
nical guidelines should contain not only the rules de-
scribing the particular steps for uploading the new xAp-
p/rApp to the store or the pre-upload checklist but
should also specify the whole format of the final pack-
age of files to be uploaded. It could include, for ex-
ample, the detailed template for the project structure
and all necessary project items. The developer will then
know which files are obligatory and which play a sup-
portive role. One can imagine that, depending on the
applied software architecture, like model-view-controller
or any other, some specific types of files may be stored
in dedicated folders and forms. For example, various re-
sources like images, icons, sets of strings or constant
variables, language packages, or even trained models
for the used AI tools could have dedicated folders in
the project structure; the internal databases could be
another example of the resource that require separate
storage rules. Moreover, the developer shall follow the
rules accepted by the store and/or RIC provider related
to, e.g., applied ways for exception handling, usage of
threads and processes, the ways for handling permis-
sions, as well as the way for expressing dependencies
with other xApps/rApps and the underlying network
elements.
By default, the application uploaded to the store will
be implemented by a third-party company (i.e., exter-
nal to the store and the RIC provider). In that context,
the final store client (i.e., the MNO) should be aware
of the xApp/rApp authorship, the type of the appli-
cation, its version, and the type of license. Moreover,
the MNO would be interested in knowing what neces-
sary permissions should be granted to the application
to work; in other words, what are the required input
arguments (such as number and location of active user
equipment, UE, the receives signal strengths by the base
stations, type of generated traffic by the UEs or applied
modulation and coding schemes to certain UEs, etc.).
The xApp/rApp provider shall also explicitly inform the
MNO about the expected output parameters and list all
potentially modified or affected features of the controlled
network. Next, since the xApp/rApp will, in most cases,
not run independently from other applications of that
kind, all dependencies with other typical applications
should be specified to detect and mitigate prospective
conflicts. It seems obvious that most or at least some of
the above parameters and pieces of information should



Fig. 4 – Key phases in automated xApp/rApp development, upload and deployment

be standardized by authorized standardization bodies.
Nevertheless, such kind of information forms a collec-
tion of metadata, which could also be gathered in the
dedicated file(s), such as in a manifest file when follow-
ing the popular approach. In Listing 1 in A, we propose
the content of the prospective manifest file that could
be applied as a template for the delivery of xApp/rApp.
Let us briefly summarize the key features of the xAp-
p/rApp design from the perspective of effective automa-
tion of the whole process:

• the template-based application design can be used
by both, the customized and the third-party xAp-
p/rApp providers;

• there is a strong need for the standardized
API/SDK, which should be secure, stable, upgrade-
able, etc.;

• the template-based xApp/rApp design should pro-
mote flexible, secure, and continuous implementa-
tion;

• there should be a specific project structure, which
assumes the presence of, e.g., dedicated space for
specific modules (resources), application of the
common ways for exceptions handling, threads, and
resource management, etc.;

• the process of template-based application design
should be as much as possible independent of the
target application, including, e.g., the topology of

the controlled wireless networks, type of underly-
ing hardware facilities, and ways of implementation
(e.g., server-less or server-based);

• the application design should be prepared for intel-
ligent coexistence of various xApps;

• the application design should be associated with
various service models (E2SM); in other words,
it should be compliant with various O-RAN AL-
LIANCE standard versions (guaranteeing back-
ward compatibility and interoperability);

• similarly to the above, the application design
should be associated with the A1-interface to con-
sume standardized policies, which are O-RAN AL-
LIANCE compliant (again guaranteeing backward
compatibility and interoperability between RIC
platforms);

• following the best practices of application de-
sign, the template-based xApp/rApp implementa-
tion should allow automatic package generation and
upload to the store.

5. XAPP EXPERIMENTATION AND
VERIFICATION

Once the xApp/rApp is completely designed and tested
locally, it should be delivered to the store with the aim
of offering it for download by any interested stakeholder.
As can be envisaged, the whole uploading process should



be automated, but it should guarantee precise and accu-
rate verification of the new contribution by applying nu-
merous tests. These tests include various conformance
tests (e.g., conformance with the expected project struc-
ture, conformance with the applied subscription mod-
els to the events occurring in the network, etc.), and
compliance tests (e.g., compliance with the O-RAN AL-
LIANCE standards), as well as performance tests (i.e.,
how various resources are utilized and consumed, such
as processing power, memory, etc.; but also what is the
performance of the application in various benchmarks).
Finally, each application shall pass through advanced
security tests and through dedicated AI-oriented tests,
following, e.g., the ITU-T Y.3176 recommendations [23].
Such AI-focused tests should verify the robustness of the
applied AI tools against various focused attacks on AI
models and algorithms and the effectiveness of applied
tools in critical situations.
A separate aspect from the store’s point of view is to
find a way to obtain fast, yet reliable, accurate, and
precise verification of the true performance of the newly
delivered xApp/rApp. As the application provider per-
forms numerous internal tests locally, such a way of per-
formance verification will not be detailed enough from
the MNO point of view. The MNO will most likely
search for numerous additional information about any
new piece of software they are considering for installa-
tion. As some performance (benchmark) metrics will
be available openly to every interested user, the store
may offer advanced performance test results as one of
its paid offers. To achieve this the store should have
facilities and ways for an independent and, to some ex-
tent, standardized way for true performance evaluation
of the selected xApp/rApp. The test could be performed
in a dedicated sandbox, which will allow for the precise
identification of any safety issues or symptoms of inef-
ficiency. A sandbox can be interpreted as an isolated
testing environment that will create opportunities for
advanced testing and verification of the xApps/rApps
without affecting the network and/or other applications
or running systems. Moreover, following the concept of
Digital Twins (DT) [20, 21, 22], the store can run xAp-
p/rApp on the DT of an existing network to check the
true impact of the application tested. Let us note that
such a verification process may be multiphase by nature.
First, the store may run the new xApp/rApp solely in
the sandbox (or DT domain) to check its performance.
Once it is done, mutual dependencies and relations with
other xApps/rApps should be tested again within the
dedicated sandbox or in the DT domain. Finally, short-
term performance evaluation provides a view of the true
functioning of the application. However, it is evident
that long-term performance evaluation is also very im-
portant. Thus, the store should be able to run long-term
simulations to provide detailed benchmark results of this
kind.
Let us summarize the prospective steps of the auto-
mated application upload procedure:

• Step I

– Execution of the completeness check (i.e., if all
necessary files and modules are included in the
package);

– execution of the conformance check (format,
type, etc.).

• Step II

– Setup of the priorities and hierarchy of the
new xApp/rApp in the generic network envi-
ronment;

– establishing relations between the applications
(mandatory, optional) based on the exposed
list of addressed events the application is re-
sponding to.

• Step III

– Verification of the rules for accessing the
databases

– verification of the required permissions and of
the impact of modified parameters;

– verification of the APIs within the RIC (e.g.,
using the API Enablement element from the
Near-RT RIC).

• Step IV

– Identification of all prospective conflicts be-
tween applications.

– classification of conflicts to various classes un-
der the management of the conflict mitigation
module in the RIC;

– identification of any critical conflicts

• Step V

– Verification of numerous security tests and
performance tests based on data provided by
the developer;

– execution of independent security tests –
generic tests and xApp/rApp specific tests.

• Step VI

– Execution of the long-term performance tests
(i.e., start monitoring how xApp/rApps be-
haves in the network in the longer time scale);

– generation of generic reports delivered to the
provider and for the customer;

– generation of detailed reports available after
payment.



6. XAPP CUSTOMIZATION AND
DEPLOYMENT

Very similar observations (to those associated with the
xApp/rApp store) can be made while analyzing the au-
tomation in the final deployment stage. The MNO shall
be able to easily and safely buy the application of inter-
est, test and verify it on its own environment, customize
it to its needs, and, if all tests pass positively, finally de-
ploy it in the network. Again, the application of the
DT of the true underlying network of the MNO can be
considered an effective and secure way for the true veri-
fication of the downloaded xApp/rApp in a real environ-
ment. However, as the installation of any new software
may cause some unpredictable consequences, the MNO
shall have the possibility to easily uninstall the applica-
tion and roll back to the setup before its first run.
One very interesting option that appears to the MNOs,
is the automated generation of new xApps/rApps, cus-
tomized to the MNO’s needs, based on the observations
of the behavior of already installed applications. How-
ever, this item has been left for further study and is not
a subject of this paper.
In Fig. 5, we have illustrated the concept of usage of the
digital twin concept for testing purposes by the MNO.
One may observe two layers, physical twin and digital
twin, where the former reflects the true network phys-
ically deployed in a real environment, and the latter,
its digital representation in the virtual world. One can
notice that in the physical twin layer, the MNO per-
forms typical monitoring activities for the network per-
formance, it analyses the status of the network and also
the impact of really installed applications (xApps, in
this example, mobile handover xApp, MHO, and load
balancing xApp, LB). Based on such analysis, it will
make decisions on network configuration. In parallel,
however, there is a digital twin running in the virtual
domain. It is fed with information from the real world
and performs short and long-term analysis of the be-
havior of the network operating in one or more different
configurations. In Fig. 5, there are three parallel sublay-
ers in the digital twin layer, where three sets of xApps
are tested for the real data originating from the physical
layer. Mainly, in configuration A, MHO xApp and LB
xApp are tested together with the traffic steering xApp
(TS xApp). In the second case, Quality-of-Service-based
Resource Allocation (QRA) xApp is tested with MHO
xApp and LB xApp, whereas in the third case, TS xApp
without LB xApp is verified. Based on such analyses,
the MNO may decide on the potential deployment of
any new xApp in a real network. Please note that as
discussed in Section 5, an analogous approach may be
applied by the xApp/rApp store manager.
Similar to the steps described in the previous section
related to the store, let us concisely analyze the possible
steps in the deployment of any new application in the
O-RAN network.

• Step I

– Installation of the application in the DT do-
main;

– execution of initial conformance, security, etc.
tests specified by the MNO;

– establishing relations between certain applica-
tions (mandatory, optional) already deployed,
selection of permissions.

• Step II

– Definition of the experimentation setup of the
DT network (topology, structure, performance
metrics);

– execution of the advanced, yet short-term,
performance tests.

• Step III

– Initial performance results analysis;
– statistics presentation and reasoning for sim-

ple performance tests.

• Step IV

– Execution of the advanced and long-term per-
formance tests;

– active reasoning – observations of the results
of specific xApps/rApps

• Step V

– Performing the final evaluation;
– deployment in the true network if all tests

passed positively

• Step VI (continuous)

– Performing a permanent evaluation to detect
any long-term negative effects (both in the real
world and in parallel in the DT domain);

– performing long-term simulations to detect
various dependencies between xApps;

– based on the observations of the functioning
of various applications, the intelligent creation
of the new xApp benefiting from the already
installed ones.

7. CONCLUSION
This position paper describes the need for autonomous
operation in O-RAN; based on current O-RAN imple-
mentations, engineers are focused on creating solutions
that are tightly-coupled to esoteric platform implemen-
tations, rather than reusable, platform-portable innova-
tive solutions in their expert domains. Influenced by
active efforts in various standards bodies, as well as hy-
perscaler app marketplaces, we propose a straightfor-
ward approach to the assisted design and automated



Fig. 5 – Illustration of the usage of digital twin concept for xApp/rApp automated testing

testing in O-RAN. Via a concrete example, we describe
our platform (RIC)-independent approach, in which an
xApp may be described, verified, tested, and deployed
by operators and third parties in an autonomous man-
ner. We believe that our approach will enable engineers
to more easily focus on improving RAN operations and
providing high-quality service and experience for users.
Looking forward, we plan to develop our platform-
independent RIC to demonstrate autonomous develop-
ment and deployment for various xApp use cases, as well
as explore the same approach to automatically configure
testing sandboxes and use them to perform experimen-
tal validation of xApps. Additionally, we will explore a
common marketplace for xApp and testing based on our

template system. Together, we see this as a pathway to
platform-independent autonomous devops for open ra-
dio access networks.



APPENDICES

A. THE XAPP/RAPP TEMPLATE
In this appendix, we present the proposed xApp tem-
plate (1), followed by a discussion of its components.
Let us briefly describe the main blocks of the proposed
xApp/rApp manifest file. First, in the <metadata> sec-
tion, all necessary information about the author and the
version of the application could be provided. In addi-
tion, the version of the O-RAN ALLIANCE standard to
which the application is compliant should be exposed.
Next, the second key block in the manifest could de-
fine all input and output arguments <IOParameters>.
These could be further categorized into subcategories
depending on the type of interface, as specified in Fig. 1.
In Listing 1, one can see some examples of such parame-
ters depending on the associated interface; for example,
one can find the type of base station under the control of
certain RICs, available bandwidths and reported radio
signal strengths observed as E2 parameters, and policy
ID and enrichment information as A1 parameters.
Those are examples, while possibly exact aspects shall
be defined, e.g., if the xApp refers to a certain E2 Node
type, i.e. O-CU-CP, O-CU-UP, O-DU, or O-eNB, such
that the MNO has a specific knowledge, which network
elements are affected. Therefore, the list of input and
output parameters should be possibly standardized, and
it could be used by the conflict detection and mitigation
modules to manage the co-functioning of various xApp-
s/rApps.
Once the input and output parameters are specified,
xApp/rApp may define the dependencies between other
applications from the same provider and other applica-
tions offered by other reputable providers.
Next, xApp/rApp may require access to some sensi-
tive data, such as UE location or UE capabilities. It
may happen that access to some kind of such data will
be mandatory (for the proper functioning of the ap-
plication) and, to some, only supportive. The inter-
ested MNO may filter and select the xApp/rApp also
based on the type of information shared with the third-
party application. Please note that the relation between
the input-output parameters and the permission is not
unique.
A separate section in the proposed manifest file deals
with the applied AI tool within the xApp/rApp. The
application of any AI tool is associated with decisions on
applied training models, ways of verification, etc. The
MNO may have a choice to select between non-trained
AI models (following the description of the provider and
rules defined by the RIC provider) and initially trained
model (i.e., to choose the model trained by reputable
xApp/rApp providers). However, such a decision can
be difficult to make, so the application provider should
include a description (following the predefined template)
of the applied AI tools, models, and the ways in which to
use them. Moreover, the application of the selected AI

tool entails specific security threats; various advanced
and focused attacks against specific AI models are pos-
sible nowadays; thus, the MNO shall be informed in
detail about the proposed AI tool.
The last section of the proposed manifest file is related
to the events to which the xApp/rApp should react and
have access. If the considered application deals with
improving the mobile handover, it should be informed
by the controller about any event of interest that could
trigger the start of the application. Similar to the per-
mission section, the event one could be further split into
obligatory events and supportive events. The presence
of such a section would also support the effective func-
tioning of the RIC. In particular, by exposing the list of
events to which the xApp/rApp should be subscribed,
the application can be correctly classified by the RIC,
proper priorities and hierarchy levels can be assigned to
it.

\label{lst:manifest}
<metadata>

AuthorList: Author Name
AuthorAffil: Author affiliation
AuthorEmail: email address
xAppName: ExamplexApp
xAppVersion: app version
xApp subversion: app subversion
Standard_version: version
…

<BriefDescription>
The goal of this xApp...

</BriefDescription>
</metadata>
<IOParameters>

<E2In>
E2InParamList:

VecBS_PCI: {List of IDs}
//for each entry in the VecBS_PCI
PCI_BS_type: {small, macro}
{required/additional}{standard

version}
PCI_freq:{bandwidth}{}{}
PCI_UE_assigned:{}
PCI_UE_RSSI: {}
Other

</E2In>
<A1In>

A1InParamLIst:
A1PoliciesApplied: {ListOfId}{}{}
PolicyID: {title, rules}{}{}
PolicyIDApplicationRange:{}{}{}
EnrichmentInfo:{ListOfEI}{}{}

</A1In>

<E2Out>
E2OutParamList:
VecBS_PCI: {List of IDs}



//for each entry in the VecBS_PCI
PCI_BS_type: {small, macro}
{modified/available}{standard version}
PCI_freq:{bandwidth} {}{}
PCI_UE_assigned:{}
PCI_UE_RSSI: {}}
Other

</E2Out>
<A1Out>

A1OutParamLIst:
A1PoliciesApplied: {ListOfId} {}{}
PolicyID: {title, rules} {}{}
PolicyIDApplicationRange:{} {}{}
Other

</A1Out>
<IOParameters>

<Dependencies>
<ownApps>

<appName>
xAppName:{Name}
xAppVersion:{ver}
List of jointly modified parameters:{}
Required_data_from_xAppName:{}
Modified_data_in_xAppName:{}
Action:{list_of_predefined_actions}
</appName>
<otherName>

…
</otherName>

</ownApps>
<otherApps>

<appName>
xAppName:{Name}
xAppVersion:{ver}
List of jointly modified parameters:{}
Required_data_from_xAppName:{}
Modified_data_in_xAppName:{}
Action:{list_of_predefined_actions}
</appName>
<otherName>

…
</otherName>

</otherApps>
</Dependencies>

<Permissions>
<perm-obligatory>

Access-to-UE-location
Processing-of-UE-locations
Access-to-UE-capabilities
Modification-of-handover parameters

</perm-obligatory >
< perm-preferred>

List-of-neighboring-cells
List-of-UE-from-neighboring-cells
Historical-data

</perm-preferred >

</ Permissions >

<AITools>
<type>

AIType:{supervised/unsupervised/
reinforced}
</type>
<alg>

algType:{LTSM}
algDesc:{brief description}

</alg>
</AITools >

<AITools_tests>
<input_data>

In_data:{filesInThexAppPackage}
In_data_desc:{brief description of the

input data}
Initial_AI_setup:{Setup of the AI

Models}
Initial_network_setup:{Setup of the

wireless network model – used for digital
twin testing}
</input_data>
<output_data>

OutData:{results_of_training}
</output_data>

</AITools_tests>

<Events>
<events-obligatory>

Handover - start
Cell reassociation – start
Cell reassociation – finished

</events-obligatory>
<events>

New user detected
5QI reported/changed

</events>
</Events>

Listing 1 – Generic xApp/rApp manifest structure

B. USE CASE EXAMPLE
Let us now discuss the above observations in the spe-
cific use case, the creation and deployment of the Traffic
Steering (TS) use case, as specified in [24]. The consid-
ered TS xApp has been, in practice, implemented and
tested using the open-source environment by Rimedo
Labs, i.e., the SD-RAN by Open Networking Founda-
tion. The TS application should be deployed at the
Near-RT RIC as its goal is to provide network optimiza-
tion within the control loop of between 10 ms and 1 s.
The following set of mandatory parameters (from the
TS xApp design perspective) can be identified as de-
fined in the standard: Distribution of Synchronization
Signal Reference Signal Received Power (SS-RSRP),



User Equipment Identity (UE ID), Cell Global Iden-
tity (CGI), Single – Network Slice Selection Assistance
Information (S-NSSAI), 5G QoS Identifier (5QI), Mean
number of RRC Connections, and max number of RRC
Connections. Next, besides the mandatory items, op-
tional (supportive) parameters may be used, such as
Distribution of DL/UL UE throughput in gNB, Radio
Resource Utilization (including DL/UL total available
PRB, Mean, and Peak DL/UL PRB used for data traf-
fic), and mobility management-related measurements
(including the number of inter-gNB handovers, intra-
gNB handovers, intra/inter-frequency handover related
measurements). Finally, the following output parame-
ters can be identified, such as User Equipment Identity
(UE ID), Primary Cell ID, Target Primary Cell ID, List
of PDU sessions for handover, List of Data Radio Bear-
ers (DRB) for handover, List of Secondary cells to be
set up (optional).
The TS xApp assumes that it will follow the policies
specified by the MNO, as defined in [25]. In our im-
plementation, four policies are considered, named as
SHALL, FORBID, PREFER and AVOID. In addition,
the vanilla AI tool applied (logistic regression) was used
to select the best policy for a given user deployment.
Finally, the TS xApp should respond to the following
events:

• Registration of the new UE in the network;

• change in network status due to the mobile han-
dover;

• start and end of the mobile handover;

• deregistration of a UE in the network;

• change of the TS policy (addition of new policy,
selection of new policy, change of the policy setup);

• change the 5QI, as a result of the changed service;

• switching on/off of base station or its elements (like
spectrum bands, antennas/rf-chains, carriers, etc.).

B.1 Template example
Based on the above xApp characterization, the following
example of the template manifest file could be specified,
as shown in Listing 2. One may notice the presence of
the metadata block that specifies the generic description
of the Traffic Steering Application (TS xApp). Next, all
input and output parameters associated with the E2 and
A1 interfaces are discussed. It is followed by the defini-
tion of the dependencies with the other xApps delivered
by xApp provider, namely Quality-of-Service-based Re-
source Allocation (QRA) and Load Balancing (LB). As
in the case of TS and QRA one may state that they
are fully complementary, it is envisaged that TS and
LB have an impact on a similar set of parameters. As a
proposed policy, it is suggested that TS xApp overwrites
all decisions of the LB xApp. For proper functioning,

the TS application requires some specific permissions,
such as access to the power of the signal from each UE
in the network. As mentioned above, the application
performs the logistic regression algorithm, being an ex-
ample of supervised learning. Finally, the set of events
to which the application should be subscribed is pro-
vided. Note, the description of the xApp is taken from
[26] as developed by Rimedo Labs.

<metadata>
AuthorList: Author1, Author 2
AuthorAffil: xApp Provider
AuthorEmail: email@address.com
xAppName: Traffic Steering xApp
xAppVersion: 1.0
xApp subversion: 1.0
Standard_version: 03.2022
<BriefDescription>

The goal of the xApp is to
intelligently and flexibly associate users
-to-cells based on predefined policies.
Controls cell preferences and mobile
handovers related to individual users,
users within the same QoS flow, or users
associated with a given network slice, to
improve the utilization of radio resources
within the network and meet the QoS

demands of users.
</BriefDescription>

</metadata>
<IOParameters>

<E2In>
E2InParamList:

User Equipment Identity (UE ID)
Cell Global Identity (CGI)
Single – Network Slice Selection

Assistance
Information (S-NSSAI)

5G QoS Identifier (5QI)
Mean number of RRC Connections
Max number of RRC Connections

</E2In>
<A1In>

A1InParamLIst:
AVOID, SHALL, FORBID, PREFER
PolicyID: {AVOID, rules}{SHALL, rules

}{FORBID, rules}{PREFER, rules}
</A1In>

<E2Out>
E2OutParamList:

User Equipment Identity (UE ID)
Primary Cell ID
Target Primary Cell ID
List of PDU sessions for handover
List of Data Radio Bearers (DRB)

for handover
</E2Out>



<IOParameters>

<Dependencies>
<ownApps>

<appName>
xAppName:QRA
xAppVersion:1.0
List of jointly modified parameters:

None
Required_data_from_QRA:

Radio Resource Utilization
DL/UL throughput distribution

Modified_data_in_QRA:
Number of active PDU sessions
Number of active UEs

Action: {NONE}
</appName>
<appName>
xAppName:LB
xAppVersion:2.0
List of jointly modified parameters:

List of DRBs for handover
List of PDU sessions for handover
UE ID
Target Primary Cell ID

Required_data_from_LB:
None

Modified_data_in_LB:
None

Action: {OVERWRITE TS DECISIONS}
</appName>

</ownApps>
</Dependencies>

<Permissions>
<perm-obligatory>

Access-to-UE-RSSI reports
</perm-obligatory >
< perm-preferred>

List-of-neighboring-cells
List-of-UE-from-neighboring-cells

</perm-preferred >
</ Permissions >

<AITools>
<type>

AIType:{supervised}
</type>
<alg>

algType:{Logistic Regression}
algDesc:{The algorithm decides on the

best policy for a given distribution of
UEs}
</alg>

</AITools >

<AITools_tests>
<input_data>

In_data:{TRAINED_MODELS}
In_data_desc:{The model is trained

over million of user deployments in the 5
base station scenario}
</input_data>
<output_data>

OutData:{TRAINED_MODEL}
</output_data>

</AITools_tests>

<Events>
<events-obligatory>

Registration of the new UE in the
network

Change in network status due to the
mobile handover

Start and end of the mobile handover
Unregistration of a UE in the network
Change of the TS policy (addition of

new policy, selection of new policy,
change of the policy setup)

Change of the 5QI parameters of give
users

Switching on/off of base station, its
elements (like active bearers, spectrum
bands, antennas, etc.)

</events-obligatory>
</Events>

Listing 2 – TS manifest example

B.2 Verification and deployment procedure
Based on the information provided in the manifest file,
the store and the MNO shall perform numerous tests to
verify the true performance of the application. In addi-
tion to various typical tests for performance evaluation,
dedicated tests could be performed in the scenario de-
scribed in the manifest. It was mentioned there that
logistic regression models had been trained and veri-
fied in the network consisting of five base stations over
one million UE deployments. Short and long-term tests
should be run to assess the performance of xApp in var-
ious network configurations. Next, it is mentioned that
the TS xApp has identified dependency with the LB ap-
plication of the same provided, thus test for the mutual
impact of these applications shall be performed at least
by the store (and by the MNO, if it already has the
LB application installed). Finally, the set of events to
which the TS should be registered is provided. In that
context, advanced testing scenarios shall be defined and
tests should be carried out to check possible conflicts
between other applications also being dependent on and
influencing the same network parameters.

REFERENCES
[1] “O-RAN ALLIANCE website”. In: (July 2022).

url: https://www.o-ran.org.

https://www.o-ran.org


[2] WG1 O-RAN ALLIANCE. “O-RAN Architecture
Description, v.6.0”. In: (Mar. 2022). url: https:
/ / orandownloadsweb . azurewebsites . net /
specifications.

[3] O-RAN ALLIANCE WG3. “O-RAN Working
Group 3, Near-Real-time RAN Intelligent Con-
troller Near-RT RIC Architecture, v.2.1”. In:
(Mar. 2022). url: https://orandownloadsweb.
azurewebsites.net/specifications.

[4] O-RAN ALLIANCE WG2. “O-RAN Working
Group 2, Non-RT RIC Architecture, v.2.0”. In:
(July 2022). url: https://orandownloadsweb.
azurewebsites.net/specifications.

[5] Salvatore D’Oro, Michele Polese, Leonardo Bon-
ati, Hai Cheng, and Tommaso Melodia. “dApps:
Distributed Applications for Real-Time Inference
and Control in O-RAN”. In: IEEE Communica-
tions Magazine 60.11 (2022), pp. 52–58. doi: 10.
1109/MCOM.002.2200079.

[6] Luca Baldesi, Francesco Restuccia, and Tom-
maso Melodia. “ChARM: NextG Spectrum Shar-
ing Through Data-Driven Real-Time O-RAN Dy-
namic Control”. In: IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications. 2022,
pp. 240–249. doi: 10.1109/INFOCOM48880.2022.
9796985.

[7] Marcin Dryjański, Łukasz Kułacz, and Adrian
Kliks. “Toward Modular and Flexible Open RAN
Implementations in 6G Networks: Traffic Steer-
ing Use Case and O-RAN xApps”. In: Sensors
21.24 (2021). issn: 1424-8220. doi: 10 . 3390 /
s21248173. url: https://www.mdpi.com/1424-
8220/21/24/8173.

[8] Michele Polese, Leonardo Bonati, Salvatore
D’Oro, Stefano Basagni, and Tommaso Melodia.
“ColO-RAN: Developing Machine Learning-based
xApps for Open RAN Closed-loop Control on Pro-
grammable Experimental Platforms”. In: IEEE
Transactions on Mobile Computing (2022), pp. 1–
14. doi: 10.1109/TMC.2022.3188013.

[9] Michele Polese, Leonardo Bonati, Salvatore
D’Oro, Stefano Basagni, and Tommaso Melodia.
“Understanding O-RAN: Architecture, Interfaces,
Algorithms, Security, and Research Challenges”.
In: IEEE Communications Surveys & Tutorials
(2023), pp. 1–1. doi: 10 . 1109 / COMST . 2023 .
3239220.

[10] Salvatore D’Oro, Leonardo Bonati, Michele
Polese, and Tommaso Melodia. “OrchestRAN:
Network Automation through Orchestrated In-
telligence in the Open RAN”. In: IEEE INFO-
COM 2022 - IEEE Conference on Computer Com-
munications. 2022, pp. 270–279. doi: 10.1109/
INFOCOM48880.2022.9796744.

[11] Theofanis Karamplias, Sotirios T. Spantideas,
Anastasios E. Giannopoulos, Panagiotis Gkonis,
Nikolaos Kapsalis, and Panagiotis Trakadas. “To-
wards Closed-loop Automation in 5G Open RAN:
Coupling an Open-Source Simulator with xApps”.
In: 2022 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G
Summit). 2022, pp. 232–237. doi: 10 . 1109 /
EuCNC/6GSummit54941.2022.9815658.

[12] DASH Industry Forum. “DASH-IF Position
Paper: Server and Network Assisted DASH
(SAND)”. In: position paper (2016). url: https:
//dashif.org/docs/SAND-Whitepaper-Dec13-
final.pdf.

[13] I. F. Akyildiz, E. Khorov, A. Kiryanov, D. Kovkov,
A. Krasilov, M. Liubogoshchev, D. Shmelkin, and
S. Tang. “xStream: A New Platform Enabling
Communication Between Applications and the 5G
Network”. In: 2018 IEEE Globecom Workshops
(GC Wkshps). 2018, pp. 1–6. doi: 10 . 1109 /
GLOCOMW.2018.8644183.

[14] I.F. Akyildiz, A. Kak, E. Khorov, A. Krasilov,
and A. Kureev. “ARBAT: A flexible network
architecture for QoE-aware communications in
5G systems”. In: Computer Networks 147 (2018),
pp. 262–279. issn: 1389-1286. doi: https://doi.
org / 10 . 1016 / j . comnet . 2018 . 10 . 016. url:
https : / / www . sciencedirect . com / science /
article/pii/S1389128618311228.

[15] Shriganesh Yadav and Sameer Nanivadekar. “Hy-
brid Optimization Assisted Green Power Alloca-
tion Model for QoS-Driven Energy-Efficiency in
5G Networks”. In: Cybernetics and Systems 0.0
(2023), pp. 1–16. doi: 10.1080/01969722.2023.
2175147. eprint: https://doi.org/10.1080/
01969722.2023.2175147. url: https://doi.
org/10.1080/01969722.2023.2175147.

[16] Ahan Kak. “Towards 6G Through SDN and
NFV-Based Solutions for Terrestrial and Non-
Terrestrial Networks”. PhD thesis. 266 4th Street
NW, Atlanta, GA 30332, 2023. doi: http://hdl.
handle.net/1853/64746.

[17] Ian F. Akyildiz, Ahan Kak, and Shuai Nie. “6G
and Beyond: The Future of Wireless Commu-
nications Systems”. In: IEEE Access 8 (2020),
pp. 133995–134030. doi: 10.1109/ACCESS.2020.
3010896.

[18] ITU-T Focus Group on Autonomous Net-
works. Architecture Networks framework for Au-
tonomous. ITU-T, Sept. 2022, pp. 1–55. url:
https://www.itu.int/en/ITU-T/focusgroups/
an/Documents/Architecture-AN.pdf.

https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://doi.org/10.1109/MCOM.002.2200079
https://doi.org/10.1109/MCOM.002.2200079
https://doi.org/10.1109/INFOCOM48880.2022.9796985
https://doi.org/10.1109/INFOCOM48880.2022.9796985
https://doi.org/10.3390/s21248173
https://doi.org/10.3390/s21248173
https://www.mdpi.com/1424-8220/21/24/8173
https://www.mdpi.com/1424-8220/21/24/8173
https://doi.org/10.1109/TMC.2022.3188013
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/INFOCOM48880.2022.9796744
https://doi.org/10.1109/INFOCOM48880.2022.9796744
https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815658
https://doi.org/10.1109/EuCNC/6GSummit54941.2022.9815658
https://dashif.org/docs/SAND-Whitepaper-Dec13-final.pdf
https://dashif.org/docs/SAND-Whitepaper-Dec13-final.pdf
https://dashif.org/docs/SAND-Whitepaper-Dec13-final.pdf
https://doi.org/10.1109/GLOCOMW.2018.8644183
https://doi.org/10.1109/GLOCOMW.2018.8644183
https://doi.org/https://doi.org/10.1016/j.comnet.2018.10.016
https://doi.org/https://doi.org/10.1016/j.comnet.2018.10.016
https://www.sciencedirect.com/science/article/pii/S1389128618311228
https://www.sciencedirect.com/science/article/pii/S1389128618311228
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/10.1080/01969722.2023.2175147
https://doi.org/http://hdl.handle.net/1853/64746
https://doi.org/http://hdl.handle.net/1853/64746
https://doi.org/10.1109/ACCESS.2020.3010896
https://doi.org/10.1109/ACCESS.2020.3010896
https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf
https://www.itu.int/en/ITU-T/focusgroups/an/Documents/Architecture-AN.pdf


[19] ITU-T Focus Group on Autonomous Networks.
Use cases for Autonomous Networks. United Na-
tion’s ITU-T, Sept. 2022, pp. 1–56. url: https:
//www.itu.int/rec/T-REC-Y.Sup71-202207-
P/en.

[20] Fei Tao, He Zhang, Ang Liu, and A. Y. C. Nee.
“Digital Twin in Industry: State-of-the-Art”. In:
IEEE Transactions on Industrial Informatics 15.4
(2019), pp. 2405–2415. doi: 10.1109/TII.2018.
2873186.

[21] Qinglin Qi and Fei Tao. “Digital Twin and Big
Data Towards Smart Manufacturing and Industry
4.0: 360 Degree Comparison”. In: IEEE Access 6
(2018), pp. 3585–3593. doi: 10 . 1109 / ACCESS .
2018.2793265.

[22] Adil Rasheed, Omer San, and Trond Kvamsdal.
“Digital Twin: Values, Challenges and Enablers
From a Modeling Perspective”. In: IEEE Access 8
(2020), pp. 21980–22012. doi: 10.1109/ACCESS.
2020.2970143.

[23] ITU-T. Recommendation ITU-T Y.3176: Machine
learning marketplace integration in future net-
works including IMT-2020. Sept. 2020, pp. 1–32.
url: https://www.itu.int/rec/T-REC-Y.
3176-202009-I/en.

[24] O-RAN ALLIANCE WG1. “O-RAN Work-
ing Group 1, Use Cases Detailed Specifica-
tion, v.7.0”. In: (Mar. 2022). url: https :
/ / orandownloadsweb . azurewebsites . net /
specifications.

[25] O-RAN ALLIANCE WG2. “O-RAN Working
Group 2, A1 interface: Type Definitions, v.2.0”. In:
(Mar. 2022). url: https://orandownloadsweb.
azurewebsites.net/specifications.

[26] Rimedo Labs. “O-RAN Traffic Steering xApp -
Technical Specification”. In: (Mar. 2022). url:
https://mailchi.mp/0eec92853d8f/o-ran-
ts-xapp-techspec.

AUTHORS
Adrian KLIKS received his
postdoctoral degree in technical
sciences, discipline: technical
computer Science and telecom-
munications in February 2019.
He works as a university oro-
fessor at the Institute of Ra-
diocommunications of the Poz-
nan University of Technology.
He took part in numerous inter-
national research projects such

as URANUS, NEWCOM++, ACROPOLIS, COGEU,
NEWCOM#, COHERENT. He also participated in
Cost Actions IC0902, COST-Terra (IC 0905), and is cur-
rently active in CA20120 INTERACT action. Adrian

has been an IEEE Senior Member since 2013; between
2012-2017 he participated in the work of the IEEE
P1900.x standardization group. In the years 2014-2016,
he was the Membership Development / Web Visibility
Chair in the IEEE for the EMEA area. Since 2019 he is
the editor-in-chief of the Journal of Telecommunications
and Information Technology of the Institute of Commu-
nications. He is a co-founder of the PUT spin-off com-
pany Rimedo Labs.

Marcin DRYJANSKI re-
ceived his Ph.D. (with distinc-
tion) from the Poznan Univer-
sity of Technology in Septem-
ber 2019. Over the past 15
years, Marcin has served as
an R&D engineer and consul-
tant, technical trainer, techni-
cal leader, advisor, and board

member. Marcin has been involved in 5G design since
2012 when he was a work-package leader in the FP7
5GNOW project. Since 2018, he is a Senior IEEE Mem-
ber. He is a co-author of many articles on 5G and LTE-
Advanced Pro and a co-author of the book ”From LTE
to LTE-Advanced Pro and 5G” (M. Rahnema, M. Dry-
janski, Artech House 2017). Currently, he serves as CEO
and principal consultant at RIMEDO Labs.

Vishnu RAM holds a masters
degree in computer science and
engineering from Indian Insti-
tute of Technology, Delhi. He
has hands-on experience in the
field of the telecommunications
industry for more than two
decades, developing and imple-
menting standards, and holds

15 international granted patents. He was nominated to
Scientific Advisory Board Associate (SABA) member of
Motorola Networks and was a senior specialist in the
Advanced Technologies group of Nokia Networks. Cur-
rently, he works as an independent expert, coordinating
standards initiatives, liaisons with other SDOs, indus-
try bodies, open source and academia, mentoring stu-
dent projects and coordinating the ITU ”AI/ML in 5G“
Challenge around the globe. Vishnu is a senior member
of IEEE and a vice chair of the ITU-T Focus Group on
Autonomous Networks and co-convener of ITU-T Cor-
respondence Group on datasets.

Leon WONG Leon Wong is
the research collaboration and
engineering lead for Research
& Innovation Lab in Rakuten
Mobile. He is also currently
serving as chairman of ITU-
T Focus Group of Autonomous
Networks (FG-AN), established
under ITU-T Study Group 13 -

https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en
https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en
https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/ACCESS.2018.2793265
https://doi.org/10.1109/ACCESS.2018.2793265
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
https://www.itu.int/rec/T-REC-Y.3176-202009-I/en
https://www.itu.int/rec/T-REC-Y.3176-202009-I/en
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://mailchi.mp/0eec92853d8f/o-ran-ts-xapp-techspec
https://mailchi.mp/0eec92853d8f/o-ran-ts-xapp-techspec


Future networks and emerging network technologies.

.
Paul Harvey gained his PhD
from the University of Glasgow
in 2015 in the area of distributed
adaptive systems. Since then
he has worked on runtimes
for high performance comput-
ing as a work-package leader in
the ECOSCALE H2020 project
and trustworthy adaptive sys-

tems as a JSPS fellow. From 2018, Paul joined Rakuten
in Japan and became co-founder and research lead of
the Rakuten Mobile Innovation Studio. Paul is now
a lecturer in autonomous systems at the University of
Glasgow, visiting scholar, Focus Group on Autonomous
Networks working group co-chair, and a board member.
(paul-harvey.org)

http://www.paul-harvey.org

	Introduction 
	Open RAN Overview 
	O-RAN architecture 
	Non-RT RIC vs. Near-RT RIC
	rApps vs xApps
	Standardization and enablers
	Research in the O-RAN domain

	The Need for xApp Development and Deployment Automation
	ITU-T related work 
	Towards xApp automation
	Three perspectives in xApp/rApp automation 

	Template-based xApp Design 
	xApp Experimentation and Verification 
	xApp Customization and Deployment 
	Conclusion
	The xApp/rApp Template
	Use case Example
	Template example
	Verification and deployment procedure


