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Abstract—With the exponential growth of data traffic, ensuring
reliable and efficient network testing has become critical through-
out the design, implementation, and management operations. As
testing becomes essential to ensure that changes in configuration
or traffic conditions do not degrade user experience, current
testing practices rely heavily on manual configuration and simu-
lators. This reliance lead to time-consuming, difficult-to-scale,
and expert-dependent processes. To address these limitations,
our work explores the role of Automated Machine Learning
(AutoML)–based automatically generated Digital Twin (DT) in
network testing to enable rapid and scalable testing across
diverse network conditions. By integrating this approach with
a network service controller for configuration optimization, our
results evidence an improvement that DT-enabled testing achieves
high accuracy while being approximately 25,000 times faster
than simulator-based testing. The implications of these findings,
suggest that automated DT generation through AutoML can
reduce dependence on manual modeling, allow DTs to adapt
to diverse test scenarios, and enhance scalability for complex
network.

Index Terms—Digital Twin, Automated Machine Learning,
Network Testing

I. INTRODUCTION

As more people rely on networked services, the total number
of Internet users is projected to grow from 3.9 billion in 2018
to 5.3 billion by 2023, at a Compound Annual Growth Rate
(CAGR) of 6 percent, highlighting the urgent need for scalable,
reliable, and adaptable communication networks [1]. This
escalating pressure on the network has transformed the design
of Network Management and Operations (MANO) systems,
where software now plays a central role [2]. However, this
evolution also brings new challenges: software must undergo
testing to guarantee safe and reliable operation. Such testing
processes are often manual and time-consuming, leading to
limited testing speed and reduced evaluation efficiency.

Traditional testing tools (Section II-B) struggle to meet
the needs of highly dynamic networks [3]. These tools often
require extensive manual effort in both configuration and
use, are limited in scalability, and have low efficiency on
comprehensively addressing the wide range of parameters and
test combinations encountered in real-world systems [4]. As
a result, the testing process is not only time-consuming but
also slow and inefficient, particularly when applied to complex
network topologies [5].

Digital Twin (DT) technology [6] has emerged as a promis-
ing solution for network software validation. A DT is a digital
replica of a physical system or process that enables real-world
simulation, monitoring, and optimization. Early adopters of
Digital Twins include sectors such as the built environment.
With emergent applications in healthcare, energy networks etc
for both design, planning and operational decision support [7].
In the context of network services, DTs can provide a flexi-
ble testing environment by simulating diverse configurations,
predicting outcomes, and supporting decision-making without
disturbing the live system.

Despite their potential, a key limitation of DTs lies in the
inefficiency and manual nature of their creation. For each test-
ing scenario, such as latency prediction or QoS optimization,
large amounts of representative data must be collected and new
models must be trained, often with bespoke architectures [8],
[9]. For instance, Machine Learning (ML) is used as a support
technology within Software-Defined Networking (SDN) plat-
forms to detect vulnerabilities and monitor network activities
[10]. In wireless networks, ML has been employed for traffic
classification, particularly to test unseen data during the testing
phase [11]. The lack of automation forces operators to either
retrain models frequently or maintain multiple DT various,
reducing practicality and scalability [12]. As a consequence,
the overhead of maintaining, validating, and deploying several
DTs causes both time and computational costs to increase
substantially, which in turn constrains the practicality of ML-
based DTs in dynamic or large-scale environments.

To overcome the human-centric process of creating and
maintaining DTs, we propose the automatic generation of
digital twins (Section III). These DTs then support network
software validation and testing, where each DT is tailored to
specific network operational scenarios. The proposed approach
(i) reduces the reliance on manual model design, (ii) improves
the scalability of DT-based testing, and (iii) accelerates the
validation process across diverse and complex network sce-
narios. By introducing automation into the generation process,
we enhance both the efficiency and adaptability of DTs,
making them a more practical tool for modern network service
management.

To substantiate this approach, the paper is organized as fol-
lows. Section II reviews network testing platforms and Digital



Twins. Section III presents our AutoML-based DT framework.
Section IV covers the experimental setup, Section V analyzes
performance, Section V-D demonstrates DT applications, and
Section VII concludes with future directions.

II. BACKGROUND

A. Softwarization

Software-Defined Networking (SDN) [13] and Network
Function Virtualization (NFV) [14] have redefined how net-
works are designed and managed. These approaches promote
logical centralization of control and introduce “softwariza-
tion” [2] of network functions, enabling scalable and elastic
operation.

Softwarization is not only a design trend but also a crit-
ical enabler of service assurance. By shifting control from
rigid hardware appliances to software-based systems, networks
gain the ability to be dynamically configured, monitored,
and optimized [2]. In SDN, for example, operators can pro-
grammatically adapt routing policies and resource allocation
to ensure Quality of Service (QoS) even under changing
traffic conditions [13]. From this perspective, software-based
controllers enhance the capability of networks to deliver
consistent, scalable, and adaptive services.

Despite these advances, testing and validation remain crit-
ical bottlenecks. While the integration of software into con-
trollers significantly strengthens the ability to ensure network
service quality, it also increases the complexity of verifica-
tion [15]. Current validation frameworks are largely manual
and resource-intensive [16], limiting their applicability to
large-scale networks [12]. This creates an urgent need for
systematic, automated testing methodologies that can match
the scale and dynamism of modern softwarized infrastructures.

B. Network Testing Tool and Platform

With the rise of software-based network control, testing
management and orchestration software is crucial for ensur-
ing reliability, efficiency, and compliance with performance
standards. QoS frameworks use end-to-end latency to evaluate
service quality, guiding network engineering and Service Level
Agreements (SLAs) compliance [17]. However, both hardware
and software solutions have drawbacks that increase costs.

1) Hardware Platform: Hardware testbeds are composed of
purpose-built devices specifically designed for network testing.
However, they incur high costs and exhibit limited flexibility,
as reconfiguration for new testing or monitoring functions
is often impractical [18]. As network requirements continue
to evolve, these constraints hinder scalability and delay the
deployment of necessary updates.

2) Software: Simulation or emulation platforms, such as
ns-3 [19], offer greater flexibility and lower cost than hard-
ware testbeds. They eliminate physical hardware requirements,
allow rapid parameter adjustments, and provide reproducible
environments for diverse network experiments. However, their
scalability is limited: as the number of test parameters in-
creases, configuration becomes labor-intensive and execution

TABLE I: Comparison of Network Testing Methods

Testing Method Accuracy Speed Config Flexibility
Physical Testbed High Low Low
Simulation Medium Medium-High High
Digital Twin Variable High Medium-High

time grows substantially, restricting efficient exploration of
large-scale scenarios.

Beyond the scalability constraints of general-purpose simu-
lators, these limitations also extend to more specialized testing
tools. For instance, in the case of OpenRASE [20], the time re-
quired per experiment—notably around ten minutes—becomes
a critical bottleneck, particularly when the number of ex-
periments increases. This demonstrates that the challenge of
increasing time consumption under scaling workloads is a
pervasive issue across both general and specialized network
testing paradigms.

C. Network Digital Twin

In networking, DTs have emerged as powerful tools for
monitoring, analysis, and management [6]. Unlike traditional
simulators, a Network Digital Twin (NDT) places a greater
focus on capturing the realism of actual network operations,
allowing accurate replication of topologies, traffic, and behav-
iors. This makes NDTs especially promising as testing envi-
ronments where scenarios can be validated without affecting
live systems [21].

Recent studies illustrate this trend: NDTs have been applied
to QoS prediction [22], and optimization [23], often enhanced
by machine learning, giving rise to ML-based DTs that inte-
grate predictive or adaptive intelligence. Deep and reinforce-
ment learning approaches further expand these capabilities,
enabling faster simulations and scalable optimization [6].

However, the practical application of ML-based DTs is often
hampered by the inefficiency of the generation process. For
each specific testing objective, constructing an ML-based DT
requires collecting representative data and training a tailored
model, demanding extensive manual effort and domain exper-
tise. Tasks such as data interpretation, problem formulation
and model selection remain largely human-driven [24]. This
becomes particularly burdensome when testing requirements
evolve, since each scenario demands a separate modeling cy-
cle [9]. Moreover, current ML-based DTs struggle to quantify
prediction uncertainty, producing overconfident outputs with-
out reliability estimates [25]. The lack of confidence intervals
reduces operator trust and necessitates frequent validation or
retraining, as different models are often optimal for different
testing scenarios [12].

There is, therefore, a clear need for methods that can
streamline the creation of ML-based Digital Twins across
diverse network testing scenarios.

III. AUTOMATED ML-BASED DT GENERATION BY
AUTOML

To overcome the challenges of manual design and time
efficiency, we explore the use of automated machine learning



Fig. 1: AutoML framework illustrated with AutoGluon [26]

(AutoML [26]) in the automatic creation of ML-based DTs.
By automating the selection of optimal architectures and
hyperparameters, AutoML reducing human involvement and
enables scalable, adaptive testing across complex topologies.

By reducing training costs, automating model comparison,
and lowering technical barriers for practitioners, AutoML
provides a practical pathway toward automated ML-based DT
construction and validation.

To realize this vision, our experimental design was struc-
tured to evaluate three complementary perspectives. First, to
ensure that the DT approach can scale beyond simplified
scenarios, experiments were conducted on complex topolo-
gies to assess the ability of DTs to capture diverse path
behaviors. Second, to examine robustness, Gaussian noise was
injected into the simulator-generated datasets to emulate real-
world measurement uncertainties, enabling analysis of how
the accuracy of network DT is affected under imperfect data
conditions. Third, the generated DTs were integrated into a
controller to validate their utility for parameter optimization,
where the objective was to minimize end-to-end latency. To-
gether, these three stages guarantee that the evaluation covers
scalability, adaptability, and practical applicability of DTs in
realistic network management settings.

IV. EXPERIMENTAL DESIGN

Building on our proof of principle for a simple 4 node dia-
mond topology [27], we now extend the work to consider more
complex topologies and scenarios with various background
and application traffic shown in Figures 2 and 3.

A. Workflow

Our workflow is structured into a 3 stage approach: data
collection, model training, and evaluation. First, network per-
formance data is generated using simulation (Section IV-C),
ensuring that controlled conditions are represented. Next, pre-
dictive models are trained using the AutoML framework on the
full dataset, eliminating the need for manual model selection
and hyperparameter tuning. Finally, the trained models are
evaluated and integrated into an optimization framework to
identify parameter configurations that minimize latency. This
step-by-step process ensures both accuracy and efficiency,
providing a comprehensive pipeline from dataset generation
to optimization.

Fig. 2: USA topology [28]

Fig. 3: EUR topology [28]

B. Network Topology

To evaluate the proposed approach under complex scenarios,
experiments utilize network topologies from two sources:
the Abilene network from SNDlib [28] (Figure 1, hereafter
referred to as the USA topology) and the cost266 network
(Figure 2, hereafter referred to as the EUR topology). The
USA topology consists of 12 nodes and 15 links, while the
EUR topology comprises 37 nodes and 57 links. Compared
with the simple diamond topology, these configurations intro-
duce significantly more routing paths, increasing the number
of configurable network parameters to be optimized from 12
to 114.

C. Dataset Collection

With USA and EUR topologies, datasets were generated
using the ns-3 simulator [19], simulating six application
types: TCP file download (100 MB), web browsing, video
streaming, and their pairwise combinations, with latency as
the primary metric. To emulate realistic conditions, all ap-
plications operated alongside background traffic consisting
of continuous TCP downloads occupying 60% of available
bandwidth. The selected applications capture diverse traffic
behaviors—throughput-oriented (download), bursty and delay-
sensitive (web), and sustained with strict latency and jitter
constraints (video). Pairwise combinations further reflect the
mixed-traffic dynamics typical of real-world networks.

Link bandwidths ranged from 25–125 Mbps and queue sizes
from 25–125 packets. Latency measurements were recorded



as the primary performance metric. For the USA topology,
latency was collected exhaustively across all node pairs, while
the EU topology sampled 190 representative city pairs, re-
flecting the practical constraints of real-world datasets, where
exhaustive measurements are often unavailable [29].

D. Dataset

The USA and EU datasets are constructed to model end-to-
end latency between geographically distributed cities, differing
in scale and input dimensionality. For both datasets, input
features consist of the queue size and bandwidth of each
network link, capturing the core network parameters that
determine latency. The output labels correspond to the end-
to-end latency for all city pairs, measured in milliseconds.

The USA dataset contains 30 input features and 132 output
variables, representing all city-pair latencies, while the EU
dataset contains 114 input features and 190 output variables.
Six application scenarios were simulated to represent di-
verse traffic behaviors: file download (App1), video streaming
(App2), web browsing (App3), and their pairwise combina-
tions (Apps 4–6).

For model training, both datasets were randomly split into
training, validation, and test sets. The complementary design
of these datasets allows evaluation under both small- and
medium-scale networks and challenges models to generalize
under different network conditions.

E. Noise Injection

Latency measurements in real networks are inherently
noisy due to factors such as congestion, background traffic,
and measurement errors. Training models only on noise-free
data can overestimate performance and reduce generalization.
Therefore, we introduce noise into the target values to evaluate
model robustness under realistic conditions and to assess
whether the model can still provide accurate point predictions.

Gaussian noise is commonly used to model aggregated
random disturbances because, by the central limit theorem, the
sum of many independent small errors tends to be normally
distributed. It provides a controlled and unbiased way to vary
the signal-to-noise ratio, making it suitable for evaluating
model robustness under realistic measurement uncertainty.

F. Model Training

The generated datasets were used to train predictive models
with AutoGluon [26], an automated machine learning frame-
work for tabular data. AutoGluon automates preprocessing,
model selection, and ensemble construction, combining multi-
ple models from a diverse model zoo via bagging and stacking
to produce robust predictions. In this study, it reduces expert
intervention by automatically selecting and combining models.

G. DT-based Network Controller Testing

To demonstrate how ML-based DTs can move beyond
stand-alone predictors toward practical testing and control, and
aligned with the ITU-T autonomous network framework [30],
the DTs were integrated with a network configuration con-
troller. The controller identifies parameter configurations that

Fig. 4: Experimental design and practical workflow

Fig. 5: Box plot for Model Accuracies of multi application prediction
on paths of USA topology

minimize end-to-end latency, addressing the ongoing challenge
of dynamic network optimization where parameters such as
bandwidth and queue size must adapt to changing conditions.
Two evaluation modes were considered: direct simulation
using ns-3 and predictive evaluation using DTs.

V. PERFORMANCE ANALYSIS ON ORIGINAL AND
NOISE-AUGMENTED DATA

A. Performance in ideal conditions

Model performance was evaluated using the coefficient of
determination (R²), which measures the proportion of variance
in the observed latency explained by the model. A higher R²
score indicates greater predictive accuracy.

Figure 5 and Figure 6 summarizes the average prediction
accuracy across the six application scenarios for both USA and
EUR topologies. The box plots display the interquartile range,
with the median as the central line and whiskers indicating
variability; blue dots denote mean R² values. AutoGluon
achieved high accuracy, ranging from 0.7161 to 0.9766 on
the USA dataset and from 0.7175 to 0.9765 on the EUR
dataset. Video streaming (App 2) attained the highest accuracy
in both cases (≈0.976), reflecting its stable traffic pattern,
whereas web browsing (App 3) showed greater variability
(USA: 0.7161; EUR: 0.9718), underscoring the difficulty in
modeling bursty traffic flows.

Forecasting accuracy for web traffic is slightly lower than
for download and video due to its high variability and bursty,
user-driven nature. In contrast, the stability of download and
video flows enables consistently higher accuracy. Despite
this variability, the ML-based DTs perform well across all
applications, demonstrating their ability to capture diverse
network behaviors.



Fig. 6: Box plot for Model Accuracies of multi applications prediction
on paths of EUR topology

Overall, integrating ns-3–based dataset generation with Au-
toML produced an automated and efficient DT generation
process, delivering strong accuracy while eliminating manual
feature engineering and model tuning, thus accelerating DT
development and reducing technical effort.

B. Performance in noisy conditions

In addition to the clean datasets directly from ns-3, we intro-
duced Gaussian noise into the latency measurements to more
closely approximate real-world conditions and understand the
ability of AutoML to handle this. While simulation provides
precise values, actual network measurements are often affected
by random fluctuations, hardware limitations, and transient
congestion [31].

TABLE II: Average performance on Noisy dataset for USA topology

USA App 1 App 2 App 3 App 4 App 5 App 6
R² 0.8788 0.8715 0.6850 0.8650 0.7221 0.8414

TABLE III: Average performance on Noisy dataset for EUR topology

EUR App 1 App 2 App 3 App 4 App 5 App 6-
R² 0.2133 -0.0076 0.0354 0.09334 0.1477 0.0310

MAE 0.0861 0.0813 0.0830 0.0807 0.0795 0.0778

The noisy datasets were subsequently used to retrain the
models with AutoGluon, employing the same training pro-
cedure as in the clean case. Performance was evaluated us-
ing R², enabling direct comparison between the clean and
noise-augmented scenarios. Table II show that although
they experienced a moderate reduction in predictive accuracy,
they continued to achieve strong performance overall. This
indicates that in this case, ensemble-based AutoML methods
are not only robust to data imperfections but also capable
of learning stable predictive models from datasets that more
closely resemble real-world measurements.

For the EUR topology, as shown in Table III, R² went from
0.9 on the original data test set to close to 0 on the noised
data set. However, the mean absolute error (MAE) remained
relatively low, indicating that the model’s predictions were still
numerically close to the observed outcomes. This suggests that
although the noisy labels limit the model’s ability to explain
overall variance in the dataset, the model can still deliver

accurate point predictions within the noise margin. Since
prediction accuracy at the individual sample level is more
relevant for our task than explaining variance across the entire
dataset, the model remains useful under noisy conditions.

C. Discussion

The different behavior between the USA and EUR datasets
can be partly explained by their structural differences. The
USA dataset contains 30 input features and 132 outputs,
corresponding to the complete set of latencies between all city
pairs. This full coverage creates redundancy in the data, as
many outputs share underlying structural relationships. Even
when Gaussian noise is added, these consistent patterns remain
detectable, and in some cases the noise may even act as a
form of regularization, preventing overfitting and improving
generalization. In contrast, the EUR dataset consists of 114
inputs and 190 outputs, where the outputs represent latencies
from a randomly selected subset of city pairs rather than the
full set. This partial and irregular coverage reduces redundancy
and weakens the underlying signal, making the dataset more
sensitive to noise. Moreover, the higher input dimensionality
in the EUR dataset increases complexity, allowing the model
to fit noise rather than true structure. Consequently, while the
USA dataset remains robust under noisy conditions, the EUR
dataset experiences a sharper decline in R², with the model
retaining low absolute errors but failing to explain much of
the variance.

D. DT-based Controller Testing

To evaluate efficiency, we conducted a comparative experi-
ment between the ML-based DT and the ns-3 simulator within
the same optimization framework. The network controller,
implemented using a Genetic Algorithm (GA), was tasked with
minimizing end-to-end latency by tuning bandwidth and queue
size configurations. GA was selected for its ability to handle
the large, nonlinear, and non-differentiable search space of 114
parameters. In this setup, two optimization modes were tested:
one using ns-3 for direct simulation and another using the
trained DT for predictive evaluation. This comparison enables
quantitative analysis of computational efficiency, showing how
the DT can achieve similar optimization outcomes as ns-3 but
with dramatically reduced evaluation time.

The times taken for the controller to converge on a stable
solution were 33 hours for ns-3 and 4.78 seconds respectively.
In both cases, the controller successfully identified parameter
configurations that achieved the same minimum end-to-end
latency (precisely matched within 0.1 s). This significant time
saving for model-based DT evaluation for a solution space of
by 114 parameters demonstrates the power of automatically
generated DTs to support network validation and testing.

VI. FUTURE WORK

Future work will focus on validating the DT’s update
mechanisms and cost, assessing performance in real-time
network environments, and conducting a comparative study
of model selection across diverse network scenarios. These



efforts aim to enhance prediction accuracy, robustness, and
scenario-specific adaptability for practical deployment.

VII. CONCLUSION

In this paper, we proposed a method for the automated
generation of ML-based DTs to accelerate testing and improve
efficiency in the network control software. Our approach
reduces the dependence on manual modeling, adapts to diverse
test scenarios, and improves scalability for complex networks.

The experimental findings confirm the framework’s effec-
tiveness, showing robustness and adaptability, even with the
introduction of noise to the dataset. Also, the DT-based test-
ing demonstrated substantial performance gains, converging
on a stable solution approximately 25,000 times faster than
the conventional simulator approach while maintaining high
prediction accuracy. These results underscore the potential of
automated DT generation as a practical, scalable, and cost-
effective solution for future network testing and management.
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