Code vs Serialized AST Inputs for LLM-Based Code
Summarization: An Empirical Study

Shijia Dong
University of Glasgow
Glasgow, United Kingdom
2810995d@student.gla.ac.uk

Abstract

Summarizing source code into natural language descriptions (code
summarization) helps developers better understand program func-
tionality and reduce the burden of software maintenance. Abstract
Syntax Trees (ASTs), as opposed to source code, have been shown
to improve summarization quality in traditional encoder—decoder-
based code summarization models. However, most large language
model (LLM)-based code summarization methods rely on raw code
or only incorporate partial AST signals, meaning that the potential
of complete AST representation has not been fully explored for
LLMs.

This paper presents AST(NIT), an AST augmentation and serial-
ization method that preserves lexical details and encodes structural
information into LLM-compatible sequences. Experiments with
the LLaMA-3.1-8B model on the CodeXGLUE Python dataset show
that the proposed serialized ASTs reduce the length of LLM inputs,
require shorter training times, and achieve summarization quality
comparable to existing approaches.

CCS Concepts

« Software and its engineering — Documentation; General pro-
gramming languages; - Computing methodologies — Natural
language processing.

Keywords

Abstract Syntax Trees, Source Code Summarization, Large Lan-
guage Models

1 Introduction

Code summarization aims to automatically generate concise natural
language descriptions of source code, providing significant value for
program understanding, software maintenance, and collaborative
development [46].

In existing encoder—decoder-based code summarization, explic-
itly incorporating structural and semantic information into input
representations for the code summarization process provides richer
context and improves performance [6]. Among various input repre-
sentations, Abstract Syntax Trees (ASTs) [7] are hierarchical, tree-
based abstractions of source code that have been widely adopted
and have demonstrated strong performance [18, 19, 22, 37]. While
programming languages follow strict grammatical rules, models
that process flat code tokens often struggle to capture the structural
relationships inherent in code [24]. ASTs address this limitation
by explicitly representing code’s hierarchical structure, thereby

This work is licensed under a Creative Commons Attribution 4.0 International License.

Haoruo Zhao
University of Glasgow
Glasgow, United Kingdom
Haoruo.Zhao@glasgow.ac.uk

Paul Harvey
University of Glasgow
Glasgow, United Kingdom
Paul.Harvey@glasgow.ac.uk

providing richer context and enabling neural models to produce
more accurate summaries.

More recently, large language models (LLM)-based code summa-
rization methods have demonstrated remarkable performance [13,
23]. The successful adoption of ASTs in earlier encoder—decoder-
based models suggests that leveraging complete ASTs may also
benefit LLMs. However, in recent LLM-based code summarization,
most works incorporate only partial structural signals from ASTs in
the model input, such as data or control flow edges and tagged iden-
tifiers [2, 27]. Such designs fail to preserve the complete structural
context of the original tree, resulting in the loss of hierarchical re-
lationships and control structures, potentially limiting the model’s
ability to generate precise code summaries from the AST represen-
tation. One possible way to fully exploit the complete AST is to
serialize the entire tree into a linear sequence, as in the Structure-
Based Traversal (SBT) method proposed by Hu et al. 18], which has
been shown to improve summarization quality in encoder—decoder
settings. However, LLMs process inputs purely as sequences with-
out explicit structural encoders, so it remains unclear whether the
benefits of AST serialization extend to this setting. This leads to
the following research question:

ROQ: Under LLM fine-tuning, can serialized ASTs achieve
comparable or superior method-level summarization quality
to code sequences?

In this paper, serialized ASTs refer to linearized representations of
ASTs obtained through a tree-node traversal; code sequences denote
tokenized source code text without explicit structural information;
Method-level summarization focuses on generating single-sentence
natural language descriptions for individual functions or methods.

To address this question, we propose AST(NIT), an AST augmen-
tation and serialization method that preserves lexical details and en-
codes tree structure into LLM-compatible sequences. We systemati-
cally evaluate four input representations—AST(NIT), AST(Preorder),
AST(SBT), and Code on the code summarization task using the
CodeXGLUE (Python) subset [29], under identical fine-tuning and
decoding settings. Experimental results show that, for method-level
code summarization, serialized ASTs can achieve summarization
quality comparable to code sequences when used as LLM inputs.
Compared with the SBT method, AST(NIT) achieves comparable
summary quality while reducing average input length by 28.6% and
total training time by 11.3%, resulting in measurable efficiency im-
provements. In short, the contributions of this work are as follows:

e AST(NIT), an AST augmentation and serialization method
that preserves lexical details and encodes tree structure into
LLM-compatible sequences;

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

e Empirical evaluation of complete serialized AST sequences
as the sole input to LLMs for method-level code summa-
rization;

e Systematic comparison of Code, AST(Preorder), AST(SBT),
and AST(NIT) under an identical LLM fine-tuning and
decoding setup. The results indicate that serialized ASTs
can achieve summarization quality comparable to code se-
quences, and that AST(NIT) provides measurable efficiency
improvements over AST(SBT).

2 Background & Motivation

2.1 Code Summarization

Code summarization is the process of generating natural language
descriptions for code [36]. An accurate summary helps developers
quickly understand program intent, facilitating collaboration and
software maintenance [46]. The research in the code summariza-
tion field has evolved from early template-based and information
retrieval methods [11, 15, 30] to neural encoder-decoder-based mod-
els [12, 18, 20, 35]. In recent years, LLMs have made rapid progress
in code summarization [13, 34].

In addition to the continued evolution of model architectures, an-
other prominent trend in this field is the incorporation of structural
and semantic information [6] such as ASTs [3, 18], data flow [14],
and control flow graphs [42] to enrich the input representation and
provide models with richer context, thereby improving summary
quality.

Typically, the granularity of existing code summarization ap-
proaches is at the operation, method, or class level [47]. In this
work, we focus on the method level, aiming to generate concise
and accurate summaries for individual functions or methods.

2.2 LLaMA-3.1

LLMs are advanced neural models based on the transformer archi-
tecture [39] and have achieved remarkable results in code under-
standing and generation tasks [33, 41].

Among these models, we adopt LLaMA 3.1, an open-source LLM
released by Meta in 2024, due to its strong performance on code
tasks and robust long-context modeling capabilities [10]. These
features make it well suited for experiments that require process-
ing large inputs, such as serialized AST sequences. LLaMA 3.1 is
available in several parameter sizes (8B, 70B, 405B); we select the
LLaMA-3.1-8B! as it provides a good balance between performance
and computational feasibility for fine-tuning on a single GPU (see
Section 4 for details).

2.3 Abstract Syntax Tree (AST)

An AST [7] is a hierarchical, tree-based representation of the ab-
stract syntactic structure of source code, explicitly encoding both
syntactic and structural information. AST representations, when
used as model inputs, have demonstrated notable performance
improvements across various code-related tasks, such as code sum-
marization [22], code search [17], code clone detection [44]. In a
typical AST, terminal (leaf) nodes represent variables and types,

!https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Dong, Zhao, and Harvey

while non-terminal (internal) nodes denote syntactic constructs
such as loops, expressions, or declarations [37].

2.4 Motivation

Inspired by the strong performance of ASTs in encoder-decoder-
based models for code summarization, recent LLM-based approaches
have increasingly explored the potential of ASTs. However, most ex-
isting LLM studies utilize only partial structural signals from ASTs,
such as data flow or tagged identifiers, incorporated as prompt
augmentations by appending these structural hints to the text
prompt [2, 27]. Compared with using the full AST as input, this
partial-structure design overlooks the complete structural context
of the original tree, causing the hierarchical relationships and con-
trol structures within the AST to be lost. This limits the model’s
ability to accurately capture code semantics (functional meaning
and logical intent) from the AST representation and to generate
precise code summaries.

Given that SBT methods [18, 22] have shown that AST seri-
alization can effectively support code summarization within en-
coder-decoder frameworks, a potential solution for leveraging com-
plete AST in LLM-based code summarization is to use a serialized
AST as an independent input to the model. However, there are two
main challenges that need to be overcome:

Listing 1: Check negative balance

1 def check_negative_balance(operations):
balance = @
for op in operations:
balance += op
if balance < 0:
return True
return False

(1) Loss of lexical detail. Prior work has shown that identifiers
carry critical lexical details from the original code, strongly influ-
ence model performance on code summarization tasks [1]. However,
in standard ASTs, these identifiers are often abstracted away, as
terminal nodes typically record only the type without the concrete
values [37]. In Listing 1, for the statement "balance = 0" (line 2), the
nodes corresponding to "balance” and "0" are represented only as
"identifier" and "integer” (Fig. 1a).

(2) Structural mismatch. Without a structure-aware encoder,
the key challenge is to serialize the AST while preserving its orig-
inal hierarchical relationships (i.e., the parent—child and nested
node structure that reflects how statements and expressions are
organized in the code), ensuring LLMs can effectively capture and
utilize this structural information to generate accurate summaries.

3 Methods

To address the challenges outlined in Section 2, we propose AST(NIT),
an AST augmentation and serialization method that preserves lex-
ical details and encodes tree structure into LLM-compatible se-
quences.

Our workflow (Fig. 2) consists of two stages: (i) model fine-
tuning, which includes parsing, AST augmentation, AST serial-
ization, and fine-tuning, and (ii) code summary inference. The

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Code vs Serialized AST Inputs for LLM-Based Code Summarization: An Empirical Study

function_definition

n | identifier ‘
| assignment | |identiﬂer‘ |identifier | - ‘ block | return | false |
]

‘expressionistalement‘ [forﬁstatementl | retum;tatement‘

| expression_statement | | if_statement ‘

|augmented_assignment| |comparison_operator| | block |

|idemiﬁer| | += ‘ |identiﬁer| |idenn’fier| |integer| ‘return;tatement|

return true

(a) Raw AST from Tree-sitter.

function_definition

function_name:check
= parameters

| variable:operations | ‘expression_statement| |for_statement‘ | return_statement |

‘ assignment | |variable:op|‘variable:operations“ block | ‘ false |

|variab|e:ba|ance‘ |integer:0| lexpressionistatemem| I if_statement I

|augmented7assignmem:+=| |comparisonioperator:<| | block |

|variable:balance| |variable:op”variable:balance| Iinteger:ﬂ ||return_statement|

(b) AST after lexical injection and structural normalization

Figure 1: Side-by-side comparison of (a) the raw AST and (b) the augmented AST for Listing 1.

Raw Dataset
(CodeXGLUE/Python)
Parse Augment

———— AST(Standard) ———

(Tree-sitter)

Reference
Summary

: AST(NIT) Sequence |

Serialize | 0module [1]; 1 function_definition [2, 3, 5]; 2 function_name i
> i |
(NIT) | get_fractional_part... |

Code Snippets
(Python Methods)

AST(NIT)
Sequence

- Parse + Augment + Serialize
-

Stage-I: Model Fine-Tuning

—F————————— 1 Code
Summary

—

Stage-Il: Code Summary Inference

(LoRA Fine-Tuned)

|
|
|
: LLaMA-3.1-88
|

Figure 2: The overall workflow of the proposed method AST(NIT) for code summarization with serialized AST inputs.

first three steps: parsing, AST augmentation, and AST serialization
together constitute AST(NIT). We describe the implementation of
AST(NIT) below, while the fine-tuning configuration is detailed in
Section 4. The code summary inference stage follows the trained
model’s decoding setup, also described in Section 4.

3.1 AST Augmentation

In this work, we consider Python code as prior work [37] reports
that AST encoding is more effective for Python, as its corresponding
ASTs are relatively shorter and thus allow structural information

to contribute more significantly than in Java. We use the open-
source Python project Tree-sitter? to parse code snippets into ASTs.
However, as discussed in Section 2, standard ASTs generated by
such parsers do not retain all lexical details from the source code.
Moreover, standard ASTs are typically large (see Figure 1a) and
contain numerous unnamed nodes [8], such as commas and paren-
theses. For some complex methods, serializing the corresponding
ASTs can produce long sequences that may approach or exceed
the context window of an LLM. In addition, longer inputs increase
computational cost and can diffuse the model’s attention over less

Zhttps://tree-sitter.github.io/tree-sitter

https://tree-sitter.github.io/tree-sitter

informative tokens, ultimately degrading the quality of generated
code summaries. To address these issues, we modify the parsed
ASTs as follows:

(1) Lexical Injection. We explicitly inject lexical information
into terminal nodes by appending identifier names and embedding
numeric or string literals. In addition, we refine certain node types
to better reflect their semantic roles: for example, an "identifier”
within a function definition is relabeled as "function_name", while
identifiers in assignment expressions are relabeled as "variable".
After modification, the nodes corresponding to "balance” and "0" be-
come "variable:balance” and "integer:0", as highlighted in Figures 1a
and 1b.

(2) Structural Normalization. We remove most unnamed nodes
unless they carry clear semantic value (such as colons in slice ex-
pressions). For operator nodes, we embed the actual operator as its
value (e.g., "binary_operator:+") rather than creating a separate child
node. This effectively reduces the size of the tree and eliminates
irrelevant noise. For the example shown in Figures 1a and 1b, the
number of AST nodes decreases from 41 in the raw tree to 27 after
structural normalization.

This modification augments the AST with lexical details for
code summarization, while reducing overall tree size and preserv-
ing its original structure and depth, making it suitable as input
to LLMs. For comparison, we also evaluate the raw AST without
any lexical injection or structural normalization in Section 4 (see
AST(Preorder)).

3.2 AST Serialization

To make the augmented AST compatible with sequence-based
LLMs, we serialize it into a flat token sequence using a Node-
Index Traversal (NIT). We refer to the final linear representation
as AST(NIT), emphasizing that it includes both augmentation and
serialization.

Traversal procedure: Starting at the root, we perform a Depth-
First Search (DFS) based preorder traversal [38] and assign each
visited node a globally unique integer identifier (ID) in order of visi-
tation. Each node is recorded as fixed-field tuple and appended into
the token sequence, with individual nodes separated by semicolons
(;)- The tuple comprises the following fields:

o ID: the unique index of the node;

e Type: the node type (e.g., "function_definition", "call");

e Value (optional): concrete lexical content, if present (e.g.,
identifier names, literals, embed operators);

e Children (optional): the list of child IDs in visitation order,
if any.

We use a DFS-based preorder traversal because it follows the
nested structure of code, exploring each execution path to comple-
tion before backtracking. For each node, we record its attributes in
a fixed field order, making the structural information explicit in the
serialized sequence. As a result, the entire AST can be encoded as a
flat sequence, which can then be used as a direct input to LLMs.

4 Experimental Evaluation

To systematically evaluate serialized AST representations for code
summarization, we first introduce the experimental setup and eval-
uation metrics, and then describe the four input representations in

Dong, Zhao, and Harvey

this section: Code, AST(Preorder), AST(SBT), and AST(NIT). Quan-
titative results and qualitative analysis are presented in Section 5.

4.1 Experimental Setup

Dataset. We use the Python subset of the code summarization task
in CodeXGLUE [29], a widely used benchmark dataset for program
understanding. We first randomly sample approximately 50,000
methods for training, 5,000 for validation, and 5,000 for testing. We
then apply the filtering procedure to the existing records in the
dataset adopted in prior work [18, 37]: (i) remove methods whose
reference summary contain fewer than four words; (ii) exclude
constructors, property accessors, and test cases, as their summaries
are typically trivial for the model to generate and may artificially
inflate performance estimates [18]; (iii) discard duplicate samples;
(iv) if a summary contains multiple sentences, retain only the first
sentence; and (v) remove samples whose AST cannot be successfully
parsed. After cleaning, the final splits contain 30,227 training, 2,771
validation, and 3,097 test instances (Table 1).

Table 1: Dataset statistics (token counts measured with the
LLaMA-3.1 tokenizer).

Split Count

Code length (tokens) Summary length (tokens)
Min Mean Max Min Mean Max

Train 30227 16 85.97 474 4 947 38
Valid 2771 17 84.15 395 4 943 31
Test 3097 16 85.20 433 4 933 31

Model. To ensure a fair comparison across input representations,
we fine-tune the LLaMA-3.1-8B model using the above datasets,
rather than relying solely on its pre-trained parameters, thereby
reducing bias from pre-training and prompt sensitivity. All experi-
ments use the Meta-Llama-3.1-8B-Instruct® checkpoint with 4-bit
quantization via the BitsAndBytes* library, and the same configura-
tion is applied for all input representations.

Training Details. We apply Parameter-Efficient Fine-Tuning [9]
with LoRA [16], implemented using the unsloth® library which sub-
stantially reduces memory and time cost. LoRA is applied with rank
r =16, « = 16, and dropout = 0.05 to the projection layers, com-
bined with gradient checkpointing for memory efficiency. Across
all input representations, we use the same hyper-parameters: learn-
ing rate = 5 x 10™°, warm-up ratio = 0.05, weight decay = 0.01, and
max gradient norm = 1.0. We train for three epochs with a context
window of 5,000 tokens for all conditions, using the AdamW (8-bit)
optimiser [28] and mixed-precision. Since the average input length
varies across the four input representations—Code, AST(Preorder),
AST(SBT), and AST(NIT), we adopt token-based batching targeting
~ 50,000 tokens per update to reduce gradient variance. All check-
points are retained during training, and the checkpoint with the
highest validation BLEU-4 [31] is selected for test evaluation. Infer-
ence uses deterministic decoding (beam = 4, length penalty = 0.6,

Shttps://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
*https://github.com/bitsandbytes-foundation/bitsandbytes
Shttps://unsloth.ai

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://github.com/bitsandbytes-foundation/bitsandbytes
https://unsloth.ai

Code vs Serialized AST Inputs for LLM-Based Code Summarization: An Empirical Study

Table 2: Example input representations for the same function, from Listing 1 (truncated, * denotes our method).

Representation Example

AST(NIT)*

@ module [1]; 1 function_definition [2,3,5]; 2 function_name [] check_negative_balance; 3

parameters [4]; 4 identifier [] operations; 5 block [6,10,25]; 6 expression_statement [7]; 7
assignment [8,9]; 8 identifier [] balance; 9 integer [] 90;

AST(Preorder)
assignment identifier ...

AST(SBT)

module function_definition identifier parameters identifier block expression_statement

(module (function_definition (function_name_check_negative_balance)

function_name_check_negative_balance (parameters (identifier_operations)
identifier_operations)parameters (block (expression_statement (assignment (
identifier_balance)identifier_balance (integer_0)integer_@)assignment)expression_statement

Code def check_negative_balance(operations): balance = 0 ...

max_new_tokens = 64). All input types share the same zero-shot
style template.

Hardware. All models are trained on a single NVIDIA A6000
GPU (48GB).

4.2 Evaluation Metrics

We evaluate the generated summaries on the test set using four
widely adopted metrics for code summarization: (1) BLEU-4 [31]
measures the precision of overlapping n-grams between a generated
summary and its reference. Following prior work [18], we set n = 4
to balance local phrase accuracy with overall fluency. It captures
how many contiguous sequences of up to four tokens appear in
both texts. (2) METEOR [5] computes similarity through unigram
alignment between the generated and reference summaries. Unlike
BLEU-4, METEOR allows flexible matching based on exact forms,
stemming, and synonyms [24], making it more sensitive to lin-
guistic variation and synonym usage. (3) ROUGE-L [25] evaluates
sentence-level similarity by identifying the longest common subse-
quence between a generated and a reference summary. By focusing
on the longest in-sequence matches, ROUGE-L rewards summaries
that preserve the overall order of key words or phrases, rather than
isolated n-gram matches. (4) BERTScore [45] moves beyond lexical
overlap and measures semantic similarity by leveraging contextu-
alised embeddings from a variant of BERT [36]. Each token in the
generated summary is aligned to its most similar reference token
using embedding-based cosine similarity, and overall precision, re-
call, and F1 scores are then computed. This allows BERTScore to
capture semantic equivalence even when surface forms differ.

4.3 Baselines

We compare the performance of the following four input repre-
sentations on the code summarization task. Models trained with
different input representations share identical hyperparameters
and training/inference settings. Table 2 shows encodings of Listing
1 in each representation.

(1) AST(NIT) (our method). An AST sequence obtained by
first parsing the source code with Tree-sitter, then applying
Lexical Injection and Structural Normalization to augment

the tree, and finally serializing the augmented AST using
our proposed Node-Index Traversal (NIT) (see Section 3)

(2) AST(Preorder). An AST sequence obtained by parsing the
source code with Tree-sitter and serializing the unmodified
tree via preorder traversal without lexical injection or struc-
tural normalization. AST(Preorder) is a purely structural
representation: it retains only AST node types and excludes
identifier names and literal values.

(3) AST(SBT). An AST sequence obtained by parsing with Tree-
sitter and serialized via Structure-Based Traversal (SBT) [18].
SBT encodes tree structure using bracket-style markers and
injects concrete lexical values at terminal nodes. Although
originally demonstrated on Java, we apply the same seri-
alization strategy to Python to ensure a fair comparison.
AST(SBT) thus preserves identifier-level lexical informa-
tion and does not require the raw source code as a separate
input.

(4) Code. The source code token sequence. As a lexical repre-
sentation that does not explicitly encode structural infor-
mation, Code constitutes the most direct input format for
code-related tasks. We use it as a baseline to compare the
effectiveness of explicit AST-based input representations.

5 Results

To address the research question stated in Section 1, we evaluate
the four input representations from two perspectives: (i) summary
quality, assessed by BLEU-4, METEOR, ROUGE-L, and BERTScore
under identical fine-tuning and decoding settings; and (ii) efficiency,
measured by average input length, total trained tokens, training
time, and peak memory usage. Qualitative analysis and discussion
are also presented in this section.

5.1 Code vs AST(NIT) vs AST(Preorder)

Table 3 shows that, across all evaluation metrics, Code and AST(NIT)
achieve near-identical results. This indicates that, under LLM fine-
tuning, using either code sequences or a structured representation
like AST(NIT) as input yields comparable code summarization per-
formance. However, AST(Preorder) substantially underperforms
(e.g., BLEU-4: 11.75). This is mainly because the absence of lexical
details in AST(Preorder): user-defined identifiers and literals are

Table 3: Comparison of code summarization performance
on BLEU, METEOR, ROUGE-L, and BERTScore metrics for
different input representations (* denotes our method).

nput BLEU-4 METEOR ROUGE-L __ DLRIScore
Precision Recall F1
AST(NIT)* 2307 0.39 0.48 093 091 0.92
AST(Preorder) 1175 0.19 0.25 0.89 0.83 0.89
AST(SBT) 2322 0.40 0.48 093 091 092
Code 2348 039 0.49 093 091 0.92

collapsed into generic node types, leading to semantic loss. By con-
trast, Code retains lexical cues natively, and AST(NIT) reintroduces
them via lexical injection. These observations indicate that lexical
information is essential for code summarization, align with prior
findings [1], and indicate the effectiveness of the AST-augmentation
design used in AST(NIT).

5.2 AST(SBT) vs AST(NIT)

Table 3 shows that our proposed method, AST(NIT), achieves sum-
marization quality comparable to the AST(SBT) across all evalua-
tion metrics. From the efficiency perspective (Table 4), AST(NIT)
reduces the average input length by approximately 28.6% compared
to AST(SBT), and shortens total training time by 11.3% , with similar
peak memory usage. This efficiency gains come from AST(NIT)’s
compact fixed-field node tuple and child-ID list design, which avoids
the repeated type markers and bracket nesting of AST(SBT). In
summary, our method achieves summarization performance com-
parable to AST(SBT) while using shorter input sequences and has
lower training cost.

Table 4: Training statistics across different input representa-
tions (* denotes our method).

Input Avg Length Total Trained Training Peak Memory
Representation (tokens) Tokens (M) Time (h) Usage (GB)
AST(NIT)* 470.92 14.23M 11.81 11.50
AST(Preorder) 133.94 4.05M 3.57 8.80
AST(SBT) 659.17 19.90M 13.32 11.50
Code 117.82 3.56M 3.04 7.61

5.3 Qualitative Analysis

We present two representative examples to qualitatively assess the
semantic accuracy of summaries generated from different input
representations.

In Listing 2, summaries from Code, AST(NIT), and AST(SBT)
all capture the intended file deletion operation, with minor lexical
differences such as "lock file" or "temporary file", as shown in Ta-
ble 5. In contrast, AST(Preorder) incorrectly describes the action as
"removing a directory”, missing the file-specific context.

Listing 2: cleanup

Dong, Zhao, and Harvey

1 def cleanup(self):
if os.path.exists(self.path):
os.remove(self.path)

Table 5: Generated Summaries for Listing 2 Across Input
Representations

Reference Clean up files in the specified path.
AST(NIT)” Removes the temporary file.
AST(SBT) Removes the temporary file.

AST(Preorder) Removes the directory.
Code Remove the lock file.

In Listing 3, both Code and lexical-injected AST inputs (AST(NIT),
AST(SBT)) accurately describe the creation of a virtual environ-
ment, as shown in Table 6. However, AST(Preorder) fails to capture
this intent and instead generates a summary about creating a file
instance.

Listing 3: create
i def create(env_dir, system_site_packages=False,
clear=False, symlinks=False, with_pip=False,
prompt=None) :
builder = ExtendedEnvBuilder (
system_site_packages=
system_site_packages,
clear=clear,
symlinks=symlinks,
with_pip=with_pip,
prompt=prompt
)
builder.create(env_dir)
return builder.context

Table 6: Generated Summaries for Listing 3 Across Input
Representations

Reference Create a virtual environment in a directory.
AST(NIT)* Create a virtual environment in the directory.
AST(SBT) Create a virtual env in the given directory.

AST(Preorder) Create an instance of file.
Code Create a virtual environment in the given directory.

In these two examples, when lexical information is preserved,
either natively in Code or via lexical injection in AST(NIT) and
AST(SBT), the generated summaries are generally more specific
and better capture the intended functionality. In contrast, purely
structural inputs such as AST(Preorder) often result in information
loss and less precise outputs, consistent with Table 3. Meanwhile,
AST(NIT) produces code summaries comparable to those from Code
in both accuracy and detail.

Code vs Serialized AST Inputs for LLM-Based Code Summarization: An Empirical Study

5.4 Discussion

Together the results from Table 3 with qualitative analysis, we find
that while serialized ASTs (e.g., SBT) once offered clear benefits
in encoder—decoder model, our empirical evaluation suggests that,
under LLM fine-tuning, serialized ASTs achieve summary quality
comparable to code sequences.

This shift can be explained by two possible situations. First,
emergent abilities from large-scale pretraining enable LLMs to in-
ternalize structural and semantic information directly from code
without requiring explicit AST signals. Second, because modern
LLMs are pretrained on massive corpus that likely include human-
curated datasets, or close variants, used in current benchmarks, the
evaluation setting differs fundamentally from that of traditional en-
coder—decoder models. In our fine-tuning scenarios, it is no longer
possible to guarantee a strict separation between training and test
sets, meaning that the model may already have encountered the
benchmark data or similar examples during pretraining. This over-
lap makes it harder to obtain clear insights into the comparative
evaluation of AST versus code inputs. Our findings do not prevent
the possibility that AST representations remain valuable in special-
ized tasks or data-scarce settings, where explicit structural signals
may still provide complementary benefits.

6 Related Work
6.1 AST Serialization Techniques

To enable sequence-based neural models to process ASTs, researchers
commonly employ traversal methods to serialize tree structures
into sequential representations.

Classic traversal strategies, such as preorder and postorder, gen-
erate serialized sequences by recording node types and visitation
order, but typically do not support lossless reconstruction of the
original AST [43]. To address the limitations of classic traversals,
SBT [18, 19, 22] introduces bracket-style markers to enable un-
ambiguous reconstruction of the original tree. Similarly, multi-
sequence approaches, such as providing both root and leaf node
sequences or combining preorder traversal sequences with parent
node sequences [26, 32], also support reconstructing the original
AST. However, these methods typically result in much longer and
more redundant sequences, which increases computational cost. Be-
sides, some studies employ path-based methods, such as Code2Seq
and PathMiner [4, 21], which serialize ASTs as collections of root-to-
leaf paths or subtrees. These methods also preserve the structural
integrity of the AST. However, the number of path combinations is
huge, which leads to input expansion while only sampling selection
is difficult to cover the global structure.

While tree and graph-based neural models [24, 40] capture ex-
plicit hierarchy, sequence-based AST serializations still have the
advantage in LLM pipelines due to their compatibility with trans-
former architectures and direct support for efficient, end-to-end
processing.

6.2 LLMs for Code Summarization

Recent LLM-based code summarization studies can be grouped by
their input:

(1) Some models use only the code sequence as input. For
example, StarCoder [23], InCoder [13], and CodeLlama [33]
generate summaries directly from tokenized source code,
without adding structural information.

(2) To provide LLMs with richer context, thereby improving
summary quality. Some other models augment the input
with additional context or structure. These methods add in-
formation such as function signatures, comments, documen-
tation, or file paths, and may include structural signals such
as call or dependency graphs, data-flow information. Ex-
amples include PROCONSUL [27], which uses call graphs,
and Ahmed et al. [2], which supplement few-shot prompts
with repository path and data-flow details.

Research in the second category is more related to our work, as
ASTs can be seen as structure-augmented input. This motivates us
to examine whether serialized AST representations may achieve
comparable or superior summarization quality over code input with
LLMs in a fine-tuning context.

7 Conclusion and Future Work

This paper investigates whether serialized ASTs can achieve com-
parable or superior method-level summarization quality to code
sequences. To this end, we propose AST(NIT), an AST augmenta-
tion and serialization technique that preserves lexical details and
serializes the tree as a compact sequence via node-index traver-
sal. Using the LLaMA-3.1-8B, we systematically compare AST(NIT)
with two established AST serializations (SBT and preorder) as well
as with code sequences, evaluating both summary quality and effi-
ciency. Our results show that serialized ASTs can achieve summary
quality comparable to code sequences; moreover, compared to SBT,
AST(NIT) significantly reduces average input length and training
time.

Future work will examine whether these findings generalize
across other programming languages, datasets, and LLM variants.
We also plan to explore the applicability of AST(NIT) to other soft-
ware engineering tasks where structural information may be more
directly relevant, such as semantic code clustering and software
modularization. In addition, human evaluation may be considered
to complement automatic metrics.

References

[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training llms for
project-specific code-summarization. In Proceedings of the 37th IEEE/ACM inter-
national conference on automated software engineering. 1-5.

[2] Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl Barr. 2024.
Automatic semantic augmentation of language model prompts (for code summa-
rization). In Proceedings of the IEEE/ACM 46th international conference on software
engineering. 1-13.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

[5] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65-72.

[6] Aakash Bansal, Sakib Haque, and Collin McMillan. 2021. Project-level encoding
for neural source code summarization of subroutines. In 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC). IEEE, 253-264.

[7] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. 1998. Clone detection using abstract syntax trees. In Proceedings.

8

=

[9

=

[10]

(11

[12

[13]

[14]

[15]

[16

[17]

[21]

[22]

[23

[24]

[25]

[28

[29]

International Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
368-377.

Tom Beckmann, Jan Reppien, Jens Lincke, and Robert Hirschfeld. 2024. Support-
ing Construction of Domain-Specific Representations in Textual Source Code. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on Programming
Abstractions and Interactive Notations, Tools, and Environments. 17-28.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2023. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence 5, 3 (2023), 220-235.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv e-prints (2024), arXiv-2407.
Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
13-22.

Chunrong Fang, Weisong Sun, Yuchen Chen, Xiao Chen, Zhao Wei, Quanjun
Zhang, Yudu You, Bin Luo, Yang Liu, and Zhenyu Chen. 2024. Esale: Enhanc-
ing code-summary alignment learning for source code summarization. IEEE
Transactions on Software Engineering 50, 8 (2024), 2077-2095.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program
comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2. 223-226.
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large
language models. ICLR 1, 2 (2022), 3.

Fan Hu, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and
Xirong Li. 2022. Tackling long code search with splitting, encoding, and aggre-
gating. arXiv preprint arXiv:2208.11271 (2022).

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th conference on program comprehension. 200—
210.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25, 3 (2020), 2179-2217.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In 54th Annual Meeting
of the Association for Computational Linguistics 2016. Association for Computa-
tional Linguistics, 2073-2083.

Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli.
2019. Pathminer: a library for mining of path-based representations of code. In
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE, 13-17.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795-806.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).
Chen Lin, Zhichao Ouyang, Junging Zhuang, Jiangiang Chen, Hui Li, and
Rongxin Wu. 2021. Improving code summarization with block-wise abstract
syntax tree splitting. In 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC). IEEE, 184-195.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74-81.

Junhao Lin and Lu Lu. 2021. Semantic feature learning via dual sequences for
defect prediction. IEEE Access 9 (2021), 13112-13124.

Vadim Lomshakov, Andrey Podivilov, Sergey Savin, Oleg Baryshnikov, Alena
Lisevych, and Sergey Nikolenko. 2024. Proconsul: Project context for code
summarization with llms. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry Track. 866-880.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

(30]

[31

[32

®
&

[34

[35

[36

(37]

[38

[39

[40]

[41]

[42

[43

[44

[45

[46

[47

Dong, Zhao, and Harvey

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In 2013 21st International conference on program comprehension
(ICPC). IEEE, 23-32.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311-318.
Shaoming Qiu, E Bicong, Xinchen Huang, and Liangyu Liu. 2024. Software
Defect Prediction Based on Double Traversal AST. In 2024 8th Asian Conference
on Artificial Intelligence Technology (ACAIT). IEEE, 1665-1674.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950
(2023).

Chia-Yi Su and Collin McMillan. 2024. Distilled GPT for source code summariza-
tion. Automated Software Engineering 31, 1 (2024), 22.

Weisong Sun, Chunrong Fang, Yuchen Chen, Quanjun Zhang, Guanhong Tao,
Yudu You, Tingxu Han, Yifei Ge, Yuling Hu, Bin Luo, et al. 2024. An extractive-
and-abstractive framework for source code summarization. ACM Transactions
on Software Engineering and Methodology 33, 3 (2024), 1-39.

Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu,
Gelei Deng, Yang Liu, and Zhenyu Chen. 2024. Source code summarization in
the era of large language models. arXiv preprint arXiv:2407.07959 (2024).

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zhelin Zhu, and Bin
Luo. 2022. Ast-trans: Code summarization with efficient tree-structured attention.
In Proceedings of the 44th International Conference on Software Engineering. 150—
162.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM
Journal on computing 1, 2 (1972), 146-160.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering. 397-407.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang, Yangkai Du, Peiyu Liu, Shouling
Ji, and Wenhai Wang. 2023. Cp-bcs: Binary code summarization guided by control
flow graph and pseudo code. arXiv preprint arXiv:2310.16853 (2023).

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 1385-1397.
Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783-794.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav
Artzi. 2019. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675 (2019).

Xuejun Zhang, Xia Hou, Xiuming Qiao, and Wenfeng Song. 2024. A review
of automatic source code summarization. Empirical Software Engineering 29, 6
(2024), 162.

Yuxiang Zhu and Minxue Pan. 2019. Automatic code summarization: A systematic
literature review. arXiv preprint arXiv:1909.04352 (2019).

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Code Summarization
	2.2 LLaMA-3.1
	2.3 Abstract Syntax Tree (AST)
	2.4 Motivation

	3 Methods
	3.1 AST Augmentation
	3.2 AST Serialization

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Baselines

	5 Results
	5.1 Code vs AST(NIT) vs AST(Preorder)
	5.2 AST(SBT) vs AST(NIT)
	5.3 Qualitative Analysis
	5.4 Discussion

	6 Related Work
	6.1 AST Serialization Techniques
	6.2 LLMs for Code Summarization

	7 Conclusion and Future Work
	References

